TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths

Tutkimustuotosvertaisarvioitu

Standard

Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths. / Siiskonen, Antti; Priimägi, Arri.

julkaisussa: Journal of Molecular Modeling, Vuosikerta 23, Nro 2, 50, 01.02.2017.

Tutkimustuotosvertaisarvioitu

Harvard

APA

Vancouver

Author

Siiskonen, Antti ; Priimägi, Arri. / Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths. Julkaisussa: Journal of Molecular Modeling. 2017 ; Vuosikerta 23, Nro 2.

Bibtex - Lataa

@article{5092a39a129148b59b25ed4f29f14932,
title = "Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths",
abstract = "In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.",
keywords = "Basis set, Benchmarking, Density functional theory, Halogen bonding",
author = "Antti Siiskonen and Arri Priim{\"a}gi",
year = "2017",
month = "2",
day = "1",
doi = "10.1007/s00894-017-3212-4",
language = "English",
volume = "23",
journal = "Journal of Molecular Modeling",
issn = "1610-2940",
publisher = "Springer Verlag",
number = "2",

}

RIS (suitable for import to EndNote) - Lataa

TY - JOUR

T1 - Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths

AU - Siiskonen, Antti

AU - Priimägi, Arri

PY - 2017/2/1

Y1 - 2017/2/1

N2 - In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.

AB - In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.

KW - Basis set

KW - Benchmarking

KW - Density functional theory

KW - Halogen bonding

U2 - 10.1007/s00894-017-3212-4

DO - 10.1007/s00894-017-3212-4

M3 - Article

VL - 23

JO - Journal of Molecular Modeling

JF - Journal of Molecular Modeling

SN - 1610-2940

IS - 2

M1 - 50

ER -