TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2019 International Conference on Computer Vision, ICCV 2019
KustantajaIEEE
Sivut10012-10021
Sivumäärä10
ISBN (elektroninen)9781728148038
ISBN (painettu)978-1-7281-4804-5
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE/CVF International Conference on Computer Vision -
Kesto: 27 lokakuuta 20192 marraskuuta 2019

Julkaisusarja

NimiIEEE International Conference on Computer Vision
ISSN (painettu)1550-5499
ISSN (elektroninen)2380-7504

Conference

ConferenceIEEE/CVF International Conference on Computer Vision
Ajanjakso27/10/192/11/19

Tiivistelmä

We propose a new color-and-depth general visual object tracking benchmark (CDTB). CDTB is recorded by several passive and active RGB-D setups and contains indoor as well as outdoor sequences acquired in direct sunlight. The CDTB dataset is the largest and most diverse dataset in RGB-D tracking, with an order of magnitude larger number of frames than related datasets. The sequences have been carefully recorded to contain significant object pose change, clutter, occlusion, and periods of long-term target absence to enable tracker evaluation under realistic conditions. Sequences are per-frame annotated with 13 visual attributes for detailed analysis. Experiments with RGB and RGB-D trackers show that CDTB is more challenging than previous datasets. State-of-the-art RGB trackers outperform the recent RGB-D trackers, indicating a large gap between the two fields, which has not been previously detected by the prior benchmarks. Based on the results of the analysis we point out opportunities for future research in RGB-D tracker design.

Julkaisufoorumi-taso