TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Class-Specific Kernel Discriminant Analysis Revisited: Further Analysis and Extensions

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut4485-4496
JulkaisuIEEE Transactions on Cybernetics
Vuosikerta47
Numero12
Varhainen verkossa julkaisun päivämäärä13 lokakuuta 2016
DOI - pysyväislinkit
TilaJulkaistu - 1 joulukuuta 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In this paper, we revisit class-specific kernel discriminant analysis (KDA) formulation, which has been applied in various problems, such as human face verification and human action recognition. We show that the original optimization problem solved for the determination of class-specific discriminant projections is equivalent to a low-rank kernel regression (LRKR) problem using training data-independent target vectors. In addition, we show that the regularized version of class-specific KDA is equivalent to a regularized LRKR problem, exploiting the same targets. This analysis allows us to devise a novel fast solution. Furthermore, we devise novel incremental, approximate and deep (hierarchical) variants. The proposed methods are tested in human facial image and action video verification problems, where their effectiveness and efficiency is shown.

Tutkimusalat

Julkaisufoorumi-taso