Comb Model with Slow and Ultraslow Diffusion
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Sivut | 18-33 |
Sivumäärä | 16 |
Julkaisu | Mathematical Modelling of Natural Phenomena |
Vuosikerta | 11 |
Numero | 3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli |
Tiivistelmä
We consider a generalized diffusion equation in two dimensions for modeling diffusion on a comb-like structures. We analyze the probability distribution functions and we derive the mean squared displacement in x and y directions. Different forms of the memory kernels (Dirac delta, power-law, and distributed order) are considered. It is shown that anomalous diffusion may occur along both x and y directions. Ultraslow diffusion and some more general diffusive processes are observed as well. We give the corresponding continuous time random walk model for the considered two dimensional diffusion-like equation on a comb, and we derive the probability distribution functions which subordinate the process governed by this equation to the Wiener process.