Computational wavelength resolution for in-line lensless holography: Phase-coded diffraction patterns and wavefront group-sparsity
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Digital Optical Technologies 2017 |
Kustantaja | SPIE |
ISBN (elektroninen) | 9781510611153 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Digital optical technologies - Kesto: 1 tammikuuta 2000 → … |
Julkaisusarja
Nimi | Proceedings of SPIE |
---|---|
Vuosikerta | 10335 |
ISSN (painettu) | 0277-786X |
Conference
Conference | Digital optical technologies |
---|---|
Ajanjakso | 1/01/00 → … |
Tiivistelmä
In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/∼lasip/DDT/index3.html.