TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Constrained Directed Graph Clustering and Segmentation Propagation for Multiple Foregrounds Cosegmentation

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut1735-1748
Sivumäärä14
JulkaisuIEEE Transactions on Circuits and Systems for Video Technology
Vuosikerta25
Numero11
DOI - pysyväislinkit
TilaJulkaistu - 2015
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

This paper proposes a new constrained directed graph clustering (DGC) method and segmentation propagation method for the multiple foreground cosegmentation. We solve the multiple object cosegmentation with the perspective of classification and propagation, where the classification is used to obtain the object prior of each class and the propagation is used to propagate the prior to all images. In our method, the DGC method is designed for the classification step, which adds clustering constraints in cosegmentation to prevent the clustering of the noise data. A new clustering criterion such as the strongly connected component search on the graph is introduced. Moreover, a linear time strongly connected component search algorithm is proposed for the fast clustering performance. Then, we extract the object priors from the clusters, and propagate these priors to all the images to obtain the foreground maps, which are used to achieve the final multiple objects extraction. We verify our method on both the cosegmentation and clustering tasks. The experimental results show that the proposed method can achieve larger accuracy compared with both the existing cosegmentation methods and clustering methods.

Tutkimusalat

Julkaisufoorumi-taso