TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Data-driven stream mining systems for computer vision

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
OtsikkoAdvances in Computer Vision and Pattern Recognition
KustantajaSPRINGER-VERLAG LONDON LTD
Sivut249-264
Sivumäärä16
Vuosikerta68
DOI - pysyväislinkit
TilaJulkaistu - 2014
OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

Julkaisusarja

NimiAdvances in Computer Vision and Pattern Recognition
Vuosikerta68
ISSN (painettu)21916586
ISSN (elektroninen)21916594

Tiivistelmä

In this chapter, we discuss the state of the art and future challenges in adaptive stream mining systems for computer vision. Adaptive stream mining in this context involves the extraction of knowledge from image and video streams in real-time, and from sources that are possibly distributed and heterogeneous. With advances in sensor and digital processing technologies, we are able to deploy networks involving large numbers of cameras that acquire increasing volumes of image data for diverse applications in monitoring and surveillance. However, to exploit the potential of such extensive networks for image acquisition, important challenges must be addressed in efficient communication and analysis of such data under constraints on power consumption, communication bandwidth, and end-to-end latency. We discuss these challenges in this chapter, and we also discuss important directions for research in addressing such challenges using dynamic, data-driven methodologies.