TUTCRIS - Tampereen teknillinen yliopisto


Defect engineering of atomic layer deposited TiO2 for photocatalytic applications

Tutkimustuotos: Konferenssiesitys, posteri tai abstrakti


TilaJulkaistu - 7 maaliskuuta 2019
OKM-julkaisutyyppiEi OKM-tyyppiä
TapahtumaPhysics Days 2019 - Helsingin yliopisto, Helsinki, Suomi
Kesto: 5 maaliskuuta 20197 maaliskuuta 2019


ConferencePhysics Days 2019


Photoelectrochemical (PEC) water splitting is one of the potential methods of storing solar energy into chemical form as hydrogen. A major issue with the method and a challenge of renewable energy production is the development of efficient, chemically stable and cost-effective semiconductor photoelectrodes. Crystalline TiO2 as such is extremely stable and capable of unassisted photocatalytic water splitting but the efficiency is limited by the bandgap (3.0–3.2 eV) to harvest photons only in the UV range. Recently, otherwise unstable semiconductor materials that can harvest the full solar spectrum has been successfully stabilized by amorphous titanium dioxide (am.-TiO2) coatings grown by atomic layer deposition (ALD) [1]. However, the stability of am.-TiO2 without additional co-catalyst has remained unresolved [2].

In our recent studies, we have reported means to thermally modify the defect structure of ALD grown am.-TiO2 thin film under oxidative [3] and reductive [4] conditions. TiO2 films were grown on silicon and fused quartz substrates by ALD at 200 °C using tetrakis(dimethylamido)titanium (TDMAT) and deionized water as precursors. Based on the results, the as-deposited am.-TiO2 is chemically unstable and visually black exhibiting both enhanced absorbance in the visible range and exceptionally high conductivity due to the trapped charge carriers (Ti3+). Heat treatment in air at 200°C induces oxidation of Ti3+, decrease in absorbance and conductivity but has only a minor effect on the stability. However, a reasonable stability is obtained after oxidation at 300 °C, simultaneously with the crystallization of TiO2 into rutile. Furthermore, oxidation at 500 °C results in stable rutile TiO2 that produces the highest photocurrent for water oxidation. In contrast, reductive heat treatment in ultra-high vacuum (UHV) at 500 °C retains the amorphous phase for TiO2 but enhances the stability due to the formation of O– species via electron transfer from O to Ti.

[1] S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, N.S. Lewis, ”Amorphous TiO2 Coatings Stabilize Si, GaAs and GaP photoanodes for Efficient Water Oxidation”, Science 344, pp. 1005–1009, 2014. DOI: 10.1126/science.1251428.
[2] K. Sivula, ”Defects Give New Life to an Old Material: Electronically Leaky Titania as a Photoanode Protection Layer”, ChemCatChem 6, pp. 2796–2797, 2014. DOI: 10.1002/cctc.201402532.
[3] H. Ali-Löytty, M. Hannula, J. Saari, L. Palmolahti, B.D. Bhuskute, R. Ulkuniemi, T. Nyyssönen, K. Lahtonen, M. Valden, ”Diversity of TiO2: Controlling the Molecular and Electronic Structure of Atomic-Layer-Deposited Black TiO2”, ACS Appl. Mater. Interfaces In press, 2019. DOI: 10.1021/acsami.8b20608.
[4] M. Hannula, H. Ali-Löytty, K. Lahtonen, E. Sarlin, J. Saari, M. Valden, ”Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects”, Chemistry of Materials 30, pp. 1199–1208, 2018. DOI: 10.1021/acs.chemmater.7b02938.