TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Density functional simulations of pressurized Mg-Zn and Al-Zn alloys

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli045002
Sivumäärä14
JulkaisuPhysical Review Materials
Vuosikerta4
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 20 huhtikuuta 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

Binary Mg-Zn and Al-Zn alloys have been investigated theoretically under static isotropic pressure. The stable phases of these binaries on both initially hexagonal-close-packed (hcp) and face-centered-cubic (fcc) lattices have been determined by utilizing an iterative approach that uses a configurational cluster expansion method, Monte Carlo search algorithm, and density functional theory (DFT) calculations. Based on 64-atom models, it is shown that the most stable phases of the Mg-Zn binary alloy under ambient condition are MgZn3, Mg19Zn45, MgZn, and Mg34Zn30 for the hcp lattice, and MgZn3 and MgZn for the fcc lattice, whereas the Al-Zn binary is energetically unfavorable throughout the entire composition range for both the hcp and fcc lattice symmetries under all pressure conditions. By applying an isotropic pressure in the hcp lattice, Mg19Zn45 turns into an unstable phase at P≈10GPa, a new stable phase Mg3Zn appears at P≳20GPa, and Mg34Zn30 becomes unstable for P≳30GPa. For the fcc lattice, the Mg3Zn phase weakly touches the convex hull at P≳20GPa while the other stable phases remain intact up to ≈120GPa. Furthermore, making use of the obtained DFT results, the bulk modulus has been computed for several compositions up to pressure values on the order of ≈120GPa. The findings suggest that one can switch between Mg-rich and Zn-rich early-stage clusters simply by applying external pressure. Zn-rich alloys and precipitates are more favorable in terms of stiffness and stability against external deformation.

Julkaisufoorumi-taso

Tilastokeskuksen tieteenalat