TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Direction of Arrival Estimation for Multiple Sound Sources Using Convolutional Recurrent Neural Network

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2018 26th European Signal Processing Conference (EUSIPCO)
KustantajaIEEE
Sivut1462-1466
Sivumäärä5
ISBN (elektroninen)978-9-0827-9701-5
ISBN (painettu)978-1-5386-3736-4
DOI - pysyväislinkit
TilaJulkaistu - syyskuuta 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEUROPEAN SIGNAL PROCESSING CONFERENCE -
Kesto: 1 tammikuuta 1900 → …

Julkaisusarja

Nimi
ISSN (elektroninen)2076-1465

Conference

ConferenceEUROPEAN SIGNAL PROCESSING CONFERENCE
Ajanjakso1/01/00 → …

Tiivistelmä

This paper proposes a deep neural network for estimating the directions of arrival (DOA) of multiple sound sources. The proposed stacked convolutional and recurrent neural network (DOAnet) generates a spatial pseudo-spectrum (SPS) along with the DOA estimates in both azimuth and elevation. We avoid any explicit feature extraction step by using the magnitudes and phases of the spectrograms of all the channels as input to the network. The proposed DOAnet is evaluated by estimating the DOAs of multiple concurrently present sources in anechoic, matched and unmatched reverberant conditions. The results show that the proposed DOAnet is capable of estimating the number of sources and their respective DOAs with good precision and generate SPS with high signal-to-noise ratio.

Tutkimusalat

Julkaisufoorumi-taso