TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Discriminant Bag of Words based representation for human action recognition

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut185-192
Sivumäärä8
JulkaisuPattern Recognition Letters
Vuosikerta49
DOI - pysyväislinkit
TilaJulkaistu - 1 marraskuuta 2014
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In this paper we propose a novel framework for human action recognition based on Bag of Words (BoWs) action representation, that unifies discriminative codebook generation and discriminant subspace learning. The proposed framework is able to, naturally, incorporate several (linear or non-linear) discrimination criteria for discriminant BoWs-based action representation. An iterative optimization scheme is proposed for sequential discriminant BoWs-based action representation and codebook adaptation based on action discrimination in a reduced dimensionality feature space where action classes are better discriminated. Experiments on five publicly available data sets aiming at different application scenarios demonstrate that the proposed unified approach increases the codebook discriminative ability providing enhanced action classification performance.