TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

DL-CFAR: A Novel CFAR Target Detection Method Based on Deep Learning

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)978-1-7281-1220-6
ISBN (painettu)978-1-7281-1221-3
DOI - pysyväislinkit
TilaJulkaistu - 1 syyskuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE VEHICULAR TECHNOLOGY CONFERENCE -
Kesto: 1 tammikuuta 1900 → …

Julkaisusarja

NimiIEEE Vehicular Technology Conference
ISSN (painettu)1090-3038
ISSN (elektroninen)2577-2465

Conference

ConferenceIEEE VEHICULAR TECHNOLOGY CONFERENCE
Ajanjakso1/01/00 → …

Tiivistelmä

The well-known cell-averaging constant false alarm rate (CA-CFAR) scheme and its variants suffer from masking effect in multi-target scenarios. Although order-statistic CFAR (OS-CFAR) scheme performs well in such scenarios, it is compromised with high computational complexity. To handle masking effects with a lower computational cost, in this paper, we propose a deep-learning based CFAR (DL- CFAR) scheme. DL-CFAR is the first attempt to improve the noise estimation process in CFAR based on deep learning. Simulation results demonstrate that DL-CFAR outperforms conventional CFAR schemes in the presence of masking effects. Furthermore, it can outperform conventional CFAR schemes significantly under various signal-to-noise ratio conditions. We hope that this work will encourage other researchers to introduce advanced machine learning technique into the field of target detection.

Tutkimusalat

Julkaisufoorumi-taso