Dynamic action classification based on iterative data selection and Feedforward Neural networks
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | European Signal Processing Conference |
Kustantaja | European Signal Processing Conference, EUSIPCO |
ISBN (painettu) | 9780992862602 |
Tila | Julkaistu - 2013 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | 2013 21st European Signal Processing Conference, EUSIPCO 2013 - Marrakech, Marokko Kesto: 9 syyskuuta 2013 → 13 syyskuuta 2013 |
Conference
Conference | 2013 21st European Signal Processing Conference, EUSIPCO 2013 |
---|---|
Maa | Marokko |
Kaupunki | Marrakech |
Ajanjakso | 9/09/13 → 13/09/13 |
Tiivistelmä
In this paper we present a dynamic classification scheme involving Single-hidden Layer Feedforward Neural (SLFN) network-based non-linear data mapping and test sample-specific labeled data selection in multiple levels. The number of levels is dynamically determined by the test sample under consideration, while the use of Extreme Learning Machine (ELM) algorithm for SLFN network training leads to fast operation. The proposed dynamic classification scheme has been applied to human action recognition by employing the Bag of Visual Words (BoVW)-based action video representation providing enhanced classification performance compared to the static classification approach.