Embedded Implementation of a Deep Learning Smile Detector
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2018 7th European Workshop on Visual Information Processing (EUVIP) |
Alaotsikko | 26-28 November, 2018, Tampere, Finland |
Kustantaja | IEEE |
ISBN (elektroninen) | 978-1-5386-6897-9 |
ISBN (painettu) | 978-1-5386-6898-6 |
DOI - pysyväislinkit | |
Tila | Julkaistu - marraskuuta 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING - Kesto: 1 tammikuuta 1900 → … |
Julkaisusarja
Nimi | |
---|---|
ISSN (elektroninen) | 2471-8963 |
Conference
Conference | EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING |
---|---|
Ajanjakso | 1/01/00 → … |
Tiivistelmä
In this paper we study the real time deployment of deep learning algorithms in low resource computational environments. As the use case, we compare the accuracy and speed of neural networks for smile detection using different neural network architectures and their system level implementation on NVidia Jetson embedded platform. We also propose an asynchronous multithreading scheme for parallelizing the pipeline. Within this framework, we experimentally compare thirteen widely used network topologies. The experiments show that low complexity architectures can achieve almost equal performance as larger ones, with a fraction of computation required.