TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Extreme learning machine based supervised subspace learning

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut158–164
Sivumäärä7
JulkaisuNeurocomputing
Vuosikerta167
DOI - pysyväislinkit
TilaJulkaistu - 2015
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

This paper proposes a novel method for supervised subspace learning based on Single-hidden Layer Feedforward Neural networks. The proposed method calculates appropriate network target vectors by formulating a Bayesian model exploiting both the labeling information available for the training data and geometric properties of the training data, when represented in the feature space determined by the network's hidden layer outputs. After the calculation of the network target vectors, Extreme Learning Machine-based neural network training is applied and classification is performed using a Nearest Neighbor classifier. Experimental results on publicly available data sets show that the proposed approach consistently outperforms the standard ELM approach, as well as other standard methods.

Tutkimusalat

Julkaisufoorumi-taso