TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Farm detection based on deep convolutional neural nets and semi-supervised green texture detection using VIS-NIR satellite image

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
OtsikkoDATA 2019 - Proceedings of the 8th International Conference on Data Science, Technology and Applications
ToimittajatSlimane Hammoudi, Christoph Quix, Jorge Bernardino
KustantajaSCITEPRESS
Sivut100-108
Sivumäärä9
ISBN (elektroninen)9789897583773
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Data Science, Technology and Applications - Prague, Tshekki
Kesto: 26 heinäkuuta 201928 heinäkuuta 2019

Conference

ConferenceInternational Conference on Data Science, Technology and Applications
MaaTshekki
KaupunkiPrague
Ajanjakso26/07/1928/07/19

Tiivistelmä

Farm detection using low resolution satellite images is an important topic in digital agriculture. However, it has not received enough attention compared to high-resolution images. Although high resolution images are more efficient for detection of land cover components, the analysis of low-resolution images are yet important due to the low-resolution repositories of the past satellite images used for timeseries analysis, free availability and economic concerns. The current paper addresses the problem of farm detection using low resolution satellite images. In digital agriculture, farm detection has significant role for key applications such as crop yield monitoring. Two main categories of object detection strategies are studied and compared in this paper; First, a two-step semi-supervised methodology is developed using traditional manual feature extraction and modelling techniques; the developed methodology uses the Normalized Difference Moisture Index (NDMI), Grey Level Co-occurrence Matrix (GLCM), 2-D Discrete Cosine Transform (DCT) and morphological features and Support Vector Machine (SVM) for classifier modelling. In the second strategy, high-level features learnt from the massive filter banks of deep Convolutional Neural Networks (CNNs) are utilised. Transfer learning strategies are employed for pretrained Visual Geometry Group Network (VGG-16) networks. Results show the superiority of the high-level features for classification of farm regions.

Latausten tilastot

Ei tietoja saatavilla