TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Flow Cytometry-Based Classification in Cancer Research: A View on Feature Selection

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut75-85
JulkaisuCancer Informatics
Vuosikerta2015
NumeroSuppl. 5
DOI - pysyväislinkit
TilaJulkaistu - 10 huhtikuuta 2016
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In this paper, we study the problem of feature selection in cancer-related machine learning tasks. In particular, we study the accuracy and stability of different feature selection approaches within simplistic machine learning pipelines. Earlier studies have shown that for certain cases, the accuracy of detection can easily reach 100% given enough training data. Here, however, we concentrate on simplifying the classification models with and seek for feature selection approaches that are reliable even with extremely small sample sizes. We show that as much as 50% of features can be discarded without compromising the prediction accuracy. Moreover, we study the model selection problem among the ℓ₁ regularization path of logistic regression classifiers. To this aim, we compare a more traditional cross-validation approach with a recently proposed Bayesian error estimator.

Julkaisufoorumi-taso

Latausten tilastot

Ei tietoja saatavilla