TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Fundamental solution of k-hyperbolic harmonic functions in odd spaces

Tutkimustuotosvertaisarvioitu

Standard

Fundamental solution of k-hyperbolic harmonic functions in odd spaces. / Eriksson, Sirkka-Liisa; Orelma, Heikki.

julkaisussa: Journal of Physics: Conference Series, Vuosikerta 597, Nro 1, 012034, 13.04.2015.

Tutkimustuotosvertaisarvioitu

Harvard

Eriksson, S-L & Orelma, H 2015, 'Fundamental solution of k-hyperbolic harmonic functions in odd spaces', Journal of Physics: Conference Series, Vuosikerta. 597, Nro 1, 012034. https://doi.org/10.1088/1742-6596/597/1/012034

APA

Vancouver

Eriksson S-L, Orelma H. Fundamental solution of k-hyperbolic harmonic functions in odd spaces. Journal of Physics: Conference Series. 2015 huhti 13;597(1). 012034. https://doi.org/10.1088/1742-6596/597/1/012034

Author

Eriksson, Sirkka-Liisa ; Orelma, Heikki. / Fundamental solution of k-hyperbolic harmonic functions in odd spaces. Julkaisussa: Journal of Physics: Conference Series. 2015 ; Vuosikerta 597, Nro 1.

Bibtex - Lataa

@article{40c86b704f304869b9c6155839adbcfe,
title = "Fundamental solution of k-hyperbolic harmonic functions in odd spaces",
abstract = "We study k-hyperbolic harmonic functions in the upper half space . The operator is the Laplace-Beltrami operator with respect to the Riemannian metric . In case k = n - 1 the Riemannian metric is the hyperbolic distance of Poincare upper half space. The proposed functions are connected to the axially symmetric potentials studied notably by Weinstein, Huber and Leutwiler. We present the fundamental solution in case n is even using the hyperbolic metric. The main tool is the transformation of k-hyperbolic harmonic functions to eigenfunctions of the hyperbolic Laplace operator.",
author = "Sirkka-Liisa Eriksson and Heikki Orelma",
year = "2015",
month = "4",
day = "13",
doi = "10.1088/1742-6596/597/1/012034",
language = "English",
volume = "597",
journal = "Journal of Physics: Conference Series",
issn = "1742-6588",
publisher = "IOP Publishing",
number = "1",

}

RIS (suitable for import to EndNote) - Lataa

TY - JOUR

T1 - Fundamental solution of k-hyperbolic harmonic functions in odd spaces

AU - Eriksson, Sirkka-Liisa

AU - Orelma, Heikki

PY - 2015/4/13

Y1 - 2015/4/13

N2 - We study k-hyperbolic harmonic functions in the upper half space . The operator is the Laplace-Beltrami operator with respect to the Riemannian metric . In case k = n - 1 the Riemannian metric is the hyperbolic distance of Poincare upper half space. The proposed functions are connected to the axially symmetric potentials studied notably by Weinstein, Huber and Leutwiler. We present the fundamental solution in case n is even using the hyperbolic metric. The main tool is the transformation of k-hyperbolic harmonic functions to eigenfunctions of the hyperbolic Laplace operator.

AB - We study k-hyperbolic harmonic functions in the upper half space . The operator is the Laplace-Beltrami operator with respect to the Riemannian metric . In case k = n - 1 the Riemannian metric is the hyperbolic distance of Poincare upper half space. The proposed functions are connected to the axially symmetric potentials studied notably by Weinstein, Huber and Leutwiler. We present the fundamental solution in case n is even using the hyperbolic metric. The main tool is the transformation of k-hyperbolic harmonic functions to eigenfunctions of the hyperbolic Laplace operator.

UR - http://www.scopus.com/inward/record.url?scp=84928019119&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/597/1/012034

DO - 10.1088/1742-6596/597/1/012034

M3 - Article

VL - 597

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

SN - 1742-6588

IS - 1

M1 - 012034

ER -