TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Gaussian Process Regression for Forest Attribute Estimation From Airborne Laser Scanning Data

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut3361-3369
JulkaisuIEEE Transactions on Geoscience and Remote Sensing
Vuosikerta57
Numero6
Varhainen verkossa julkaisun päivämäärä2018
DOI - pysyväislinkit
TilaJulkaistu - kesäkuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

While the analysis of airborne laser scanning (ALS) data often provides reliable estimates for certain forest stand attributes-such as total volume or basal area-there is still room for improvement, especially in estimating species-specific attributes. Moreover, while the information on the estimate uncertainty would be useful in various economic and environmental analyses on forests, a computationally feasible framework for uncertainty quantifying in ALS is still missing. In this paper, the species-specific stand attribute estimation and uncertainty quantification (UQ) is approached using Gaussian process regression (GPR), which is a nonlinear and nonparametric machine learning method. Multiple species-specific stand attributes are estimated simultaneously: tree height, stem diameter, stem number, basal area, and stem volume. The cross-validation results show that GPR yields on average an improvement of 4.6% in estimate root mean square error over a state-of-the-art k-nearest neighbors (kNNs) implementation, negligible bias and well performing UQ (credible intervals), while being computationally fast. The performance advantage over kNN and the feasibility of credible intervals persists even when smaller training sets are used.

Tutkimusalat

Julkaisufoorumi-taso

Tilastokeskuksen tieteenalat