TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Generalized Multi-view Embedding for Visual Recognition and Cross-modal Retrieval

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut2542-2555
JulkaisuIEEE Transactions on Cybernetics
Vuosikerta48
Numero9
Varhainen verkossa julkaisun päivämäärä6 syyskuuta 2017
DOI - pysyväislinkit
TilaJulkaistu - syyskuuta 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In this paper, the problem of multi-view embed-ding from different visual cues and modalities is considered. We propose a unified solution for subspace learning methods using the Rayleigh quotient, which is extensible for multiple
views, supervised learning, and non-linear embeddings. Numerous methods including Canonical Correlation Analysis, Partial Least Square regression and Linear Discriminant Analysis are studied using specific intrinsic and penalty graphs within the same framework. Non-linear extensions based on kernels and
(deep) neural networks are derived, achieving better performance than the linear ones. Moreover, a novel Multi-view Modular Discriminant Analysis (MvMDA) is proposed by taking the view difference into consideration. We demonstrate the effectiveness of the proposed multi-view embedding methods on visual object
recognition and cross-modal image retrieval, and obtain superior results in both applications compared to related methods.

Julkaisufoorumi-taso