TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Highly ductile amorphous oxide at room temperature and high strain rate

Tutkimustuotosvertaisarvioitu

Standard

Highly ductile amorphous oxide at room temperature and high strain rate. / Frankberg, Erkka J.; Kalikka, Janne; Ferré, Francisco García; Joly-Pottuz, Lucile; Salminen, Turkka; Hintikka, Jouko; Hokka, Mikko; Koneti, Siddardha; Douillard, Thierry; Le Saint, Bérangère; Kreiml, Patrice; Cordill, Megan J.; Epicier, Thierry; Stauffer, Douglas; Vanazzi, Matteo; Roiban, Lucian; Akola, Jaakko; Fonzo, Fabio Di; Levänen, Erkki; Masenelli-Varlot, Karine.

julkaisussa: Science, Vuosikerta 366, Nro 6467, 15.11.2019, s. 864-869.

Tutkimustuotosvertaisarvioitu

Harvard

Frankberg, EJ, Kalikka, J, Ferré, FG, Joly-Pottuz, L, Salminen, T, Hintikka, J, Hokka, M, Koneti, S, Douillard, T, Le Saint, B, Kreiml, P, Cordill, MJ, Epicier, T, Stauffer, D, Vanazzi, M, Roiban, L, Akola, J, Fonzo, FD, Levänen, E & Masenelli-Varlot, K 2019, 'Highly ductile amorphous oxide at room temperature and high strain rate', Science, Vuosikerta. 366, Nro 6467, Sivut 864-869. https://doi.org/10.1126/science.aav1254

APA

Frankberg, E. J., Kalikka, J., Ferré, F. G., Joly-Pottuz, L., Salminen, T., Hintikka, J., ... Masenelli-Varlot, K. (2019). Highly ductile amorphous oxide at room temperature and high strain rate. Science, 366(6467), 864-869. https://doi.org/10.1126/science.aav1254

Vancouver

Author

Frankberg, Erkka J. ; Kalikka, Janne ; Ferré, Francisco García ; Joly-Pottuz, Lucile ; Salminen, Turkka ; Hintikka, Jouko ; Hokka, Mikko ; Koneti, Siddardha ; Douillard, Thierry ; Le Saint, Bérangère ; Kreiml, Patrice ; Cordill, Megan J. ; Epicier, Thierry ; Stauffer, Douglas ; Vanazzi, Matteo ; Roiban, Lucian ; Akola, Jaakko ; Fonzo, Fabio Di ; Levänen, Erkki ; Masenelli-Varlot, Karine. / Highly ductile amorphous oxide at room temperature and high strain rate. Julkaisussa: Science. 2019 ; Vuosikerta 366, Nro 6467. Sivut 864-869.

Bibtex - Lataa

@article{36928448b3d5416988b73f2a6f31084f,
title = "Highly ductile amorphous oxide at room temperature and high strain rate",
abstract = "Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100{\%}, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.",
author = "Frankberg, {Erkka J.} and Janne Kalikka and Ferr{\'e}, {Francisco Garc{\'i}a} and Lucile Joly-Pottuz and Turkka Salminen and Jouko Hintikka and Mikko Hokka and Siddardha Koneti and Thierry Douillard and {Le Saint}, B{\'e}rang{\`e}re and Patrice Kreiml and Cordill, {Megan J.} and Thierry Epicier and Douglas Stauffer and Matteo Vanazzi and Lucian Roiban and Jaakko Akola and Fonzo, {Fabio Di} and Erkki Lev{\"a}nen and Karine Masenelli-Varlot",
year = "2019",
month = "11",
day = "15",
doi = "10.1126/science.aav1254",
language = "English",
volume = "366",
pages = "864--869",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "6467",

}

RIS (suitable for import to EndNote) - Lataa

TY - JOUR

T1 - Highly ductile amorphous oxide at room temperature and high strain rate

AU - Frankberg, Erkka J.

AU - Kalikka, Janne

AU - Ferré, Francisco García

AU - Joly-Pottuz, Lucile

AU - Salminen, Turkka

AU - Hintikka, Jouko

AU - Hokka, Mikko

AU - Koneti, Siddardha

AU - Douillard, Thierry

AU - Le Saint, Bérangère

AU - Kreiml, Patrice

AU - Cordill, Megan J.

AU - Epicier, Thierry

AU - Stauffer, Douglas

AU - Vanazzi, Matteo

AU - Roiban, Lucian

AU - Akola, Jaakko

AU - Fonzo, Fabio Di

AU - Levänen, Erkki

AU - Masenelli-Varlot, Karine

PY - 2019/11/15

Y1 - 2019/11/15

N2 - Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.

AB - Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.

U2 - 10.1126/science.aav1254

DO - 10.1126/science.aav1254

M3 - Article

VL - 366

SP - 864

EP - 869

JO - Science

JF - Science

SN - 0036-8075

IS - 6467

ER -