TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Human Action Recognition Based on Multi-View Regularized Extreme Learning Machine

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli1540020
JulkaisuInternational Journal on Artificial Intelligence Tools
Vuosikerta24
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 1 lokakuuta 2015
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In this paper, we employ multiple Single-hidden Layer Feedforward Neural Networks for multi-view action recognition. We propose an extension of the Extreme Learning Machine algorithm that is able to exploit multiple action representations and scatter information in the corresponding ELM spaces for the calculation of the networks' parameters and the determination of optimized network combination weights. The proposed algorithm is evaluated by using two state-of-the-art action video representation approaches on five publicly available action recognition databases designed for different application scenarios. Experimental comparison of the proposed approach with three commonly used video representation combination approaches and relating classification schemes illustrates that ELM networks employing a supervised view combination scheme generally outperform those exploiting unsupervised combination approaches, as well as that the exploitation of scatter information in ELM-based neural network training enhances the network's performance.

!!ASJC Scopus subject areas

Tutkimusalat