Hypermonogenic Functions of Two Vector Variables
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Sivut | 555–570 |
Sivumäärä | 16 |
Julkaisu | Complex Analysis and Operator Theory |
Vuosikerta | 12 |
Numero | 2 |
Varhainen verkossa julkaisun päivämäärä | 26 syyskuuta 2017 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2018 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli |
Tiivistelmä
In this paper we introduce the modified Dirac operators (Formula presented.) and (Formula presented.), where (Formula presented.) is differentiable function, and (Formula presented.) is the Clifford algebra generated by the basis vectors of (Formula presented.). We look for solutions (Formula presented.) of the system (Formula presented.), where the first and third variables are invariant under rotations. These functions are called (Formula presented.)-hypermonogenic functions. We discuss about axially symmetric functions with respect to the symmetric group (Formula presented.). Some examples of axially symmetric (Formula presented.)-hypermonogenic functions generated by homogeneous functions and hypergeometric functions are presented.