TUTCRIS - Tampereen teknillinen yliopisto


Improved Session Continuity in 5G NR with Joint Use of Multi-Connectivity and Guard Bandwidth



Otsikko2018 IEEE Global Communications Conference, GLOBECOM 2018
ISBN (elektroninen)9781538647271
DOI - pysyväislinkit
TilaJulkaistu - 20 helmikuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Global Communications Conference - Abu Dhabi, Yhdistyneet arabiemiirikunnat
Kesto: 9 joulukuuta 201813 joulukuuta 2018


ConferenceIEEE Global Communications Conference
MaaYhdistyneet arabiemiirikunnat
KaupunkiAbu Dhabi


The intermittent millimeter-wave radio links as a result of human-body blockage are an inherent feature of the 5G New Radio (NR) technology by 3GPP. To improve session continuity in these emerging systems, two mechanisms have recently been proposed, namely, multi-connectivity and guard bandwidth. The former allows to establish multiple spatially-diverse connections and switch between them dynamically, while the latter reserves a fraction of system bandwidth for sessions changing their state from non-blocked to blocked, which ensures that the ongoing sessions have priority over the new ones. In this paper, we assess the joint performance of these two schemes for the user- and system-centric metrics of interest. Our numerical results reveal that the multi-connectivity operation alone may not suffice to increase the ongoing session drop probability considerably. On the other hand, the use of guard bandwidth significantly improves session continuity by somewhat compromising new session drop probability and system resource utilization. Surprisingly, the 5G NR system implementing both these techniques inherits their drawbacks. However, complementing it with an initial AP selection procedure effectively alleviates these limitations by maximizing the system resource utilization, while still providing sufficient flexibility to enable the desired trade-off between new and ongoing session drop probabilities.

Latausten tilastot

Ei tietoja saatavilla