TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Improved weighted prediction based color gamut scalability in SHVC

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2014 IEEE Visual Communications and Image Processing Conference, VCIP 2014
KustantajaThe Institute of Electrical and Electronics Engineers, Inc.
Sivut201-204
Sivumäärä4
ISBN (painettu)9781479961399
DOI - pysyväislinkit
TilaJulkaistu - 27 helmikuuta 2015
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaVisual Communications and Image Processing Conference - , Iso-Britannia
Kesto: 1 tammikuuta 2000 → …

Conference

ConferenceVisual Communications and Image Processing Conference
MaaIso-Britannia
Ajanjakso1/01/00 → …

Tiivistelmä

One use case that the scalable extension (SHVC) of the state-of-the-art High Efficiency Video Coding (HEVC) standard aims for is to support Ultra High Definition (UHD) TV broadcast in a backwards compatible way with the existing High Definition (HD) TV broadcast. However, since UHD content typically has higher bit-depth and wider color gamut in addition to increased spatial resolution, the compression efficiency is highly affected by the inter-layer processing applied on the base layer picture. This paper proposes an improvement for the weighted prediction based color gamut scalability to have a better mapping between the color gamuts of the base and enhancement layers. The proposed method aims at capturing the nonlinear characteristics of the color gamut mapping using a piecewise linear model, whose parameters are signaled through weighted prediction mechanism and multiple inter-layer reference pictures. Compared to other existing methods for color gamut mapping in SHVC, such as the 3D Look Up Table (LUT) method, the proposed weighted prediction based approach is less complex, as it does not require any changes to the decoder. The simulation results show up to 3.8% Bjontegaard delta bitrate gain in luma for all intra and 3.0% for random access configurations compared to the existing weighted prediction based scalability method in SHVC.