TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Indoor Localisation using Aroma Fingerprints: Comparing Nearest Neighbour Classification Accuracy using Different Distance Measures

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2018 7th International Conference on Systems and Control (ICSC)
Alaotsikko24-26 Oct. 2018, Valencia, Spain
JulkaisupaikkaValencia, Spain
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)978-1-5386-8537-2
ISBN (painettu)978-1-5386-8538-9
DOI - pysyväislinkit
TilaJulkaistu - lokakuuta 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Systems and Control -
Kesto: 1 tammikuuta 2000 → …

Julkaisusarja

Nimi
ISSN (elektroninen)2379-0067

Conference

ConferenceInternational Conference on Systems and Control
Ajanjakso1/01/00 → …

Tiivistelmä

Measurements from an ion mobility spectrometry electronic nose (eNose) can be used for distinguishing different rooms in indoor localisation. An earlier study showed that the Nearest Neighbour classifier with Euclidean distance for features provides reasonable accuracy under certain conditions. In this paper 66 alternative distance measures are compared to the Euclidean distance and principal component analysis (PCA) is applied to the data. PCA shows that the measurements on the various channels of the eNose are correlated and that using principal components 1, 2 and 4 increases the accuracy considerably. Furthermore, the experiments revealed three Pareto optimal distance measures that reduce the misclassification rate between 9-10% while using only 82-88% of the search time compared with Euclidean distance.

Julkaisufoorumi-taso

Latausten tilastot

Ei tietoja saatavilla