TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Interferometric Phase Image Estimation via Sparse Coding in the Complex Domain

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut2587-2602
Sivumäärä16
JulkaisuIEEE Transactions on Geoscience and Remote Sensing
Vuosikerta53
Numero5
DOI - pysyväislinkit
TilaJulkaistu - toukokuuta 2015
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

This paper addresses interferometric phase image estimation, i.e., the estimation of phase modulo-2 pi images from sinusoidal 2 pi-periodic and noisy observations. These degradation mechanisms make interferometric phase image estimation a quite challenging problem. We tackle this challenge by reformulating the true estimation problem as a sparse regression, often termed sparse coding, in the complex domain. Following the standard procedure in patch-based image restoration, the image is partitioned into small overlapping square patches, and the vector corresponding to each patch is modeled as a sparse linear combination of vectors, termed the atoms, taken from a set called dictionary. Aiming at optimal sparse representations, and thus at optimal noise removing capabilities, the dictionary is learned from the data that it represents via matrix factorization with sparsity constraints on the code (i.e., the regression coefficients) enforced by the l(1) norm. The effectiveness of the new sparse-coding-based approach to interferometric phase estimation, termed the SpInPHASE, is illustrated in a series of experiments with simulated and real data where it outperforms the state-of-the-art.

Tutkimusalat

Julkaisufoorumi-taso