TUTCRIS - Tampereen teknillinen yliopisto


Knowledge-based PPR modelling for assembly automation



JulkaisuCIRP Journal of Manufacturing Science and Technology
Varhainen verkossa julkaisun päivämäärä2018
DOI - pysyväislinkit
TilaJulkaistu - 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli


The paradigm shift from mass production to mass customisation and reduced product lifecycles requires continuous re-engineering/configuration of modern manufacturing systems. Although efforts are being made to design and build manufacturing systems based on the paradigms of changeability, reconfigurability, and flexibility, the knowledge of the system's capability remains unstructured and isolated from product design and engineering tools. As a result, introducing product design changes are costly, time-consuming and error-prone. To address this problem, this research utilises a Product, Process, and Resource (PPR) ontology with a view to supporting changes through information integration and knowledge generation. The approach moves away from product-centric tools such as Product Lifecycle Management (PLM) and thus a heterarchical model of the system is created. The contribution of this work is to demonstrate how modular ontologies can be utilised in a practical and industrially relevant manner by integrating the data structure of a set of component-based virtual engineering tools into the Resource domain. The research presents a proof-of-concept of the proposed approach using an automated engine assembly station as a case study. Inferences are made from explicit knowledge through rules and mapping as to whether both Product and Process requirements are met by Resource domain capabilities. The approach used in this work has the potential to significantly improve the workflow as and when new products are introduced or modifications need to be made as the scope of change can be assessed rapidly resulting in more focused engineering and design work.

!!ASJC Scopus subject areas