TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

KPI-ML based integration of industrial information systems

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2019 IEEE 17th International Conference on Industrial Informatics, INDIN 2019
KustantajaIEEE
Sivut93-99
Sivumäärä7
ISBN (elektroninen)9781728129273
DOI - pysyväislinkit
TilaJulkaistu - 1 heinäkuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Industrial Informatics - Helsinki, Helsinki, Suomi
Kesto: 22 heinäkuuta 201925 heinäkuuta 2019
https://www.indin2019.org/

Julkaisusarja

NimiIEEE International Conference on Industrial Informatics (INDIN)
Vuosikerta2019-July
ISSN (painettu)1935-4576

Conference

ConferenceIEEE International Conference on Industrial Informatics
LyhennettäINDIN '19
MaaSuomi
KaupunkiHelsinki
Ajanjakso22/07/1925/07/19
www-osoite

Tiivistelmä

In order to stay competitive in the global market, industrial manufacturers are implementing various methods to improve the production processes. This requires measuring important metrics and making use of performance measurement systems. Based on the data generated in manufacturing operations, various indicators can be defined and measured. These indicators serve as the basis for decision-making, control and health monitoring of a manufacturing process. In this paper an approach is presented that makes use of key performance indicators (KPIs). The KPIs used are defined in a standard known as, ISO 22400 Automation systems and integration-Key performance indicators (KPIs) that is usually applied for management of manufacturing operations. The approach uses the database of a production line to define KPIs and generates a tool for visualizing them. The KPIs are defined using a data model of Key Performance Indicator Markup Language (KPI-ML), which is an XML utilization of the ISO 22400 standard. The recommended approach paves a way for constructing generic KPI-ML visualization tools serving various industries to assess their performance with the same tool.

Tutkimusalat

Julkaisufoorumi-taso