TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Learning Optimal Phase-Coded Aperture for Depth of Field Extension

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2019 IEEE International Conference on Image Processing (ICIP)
KustantajaIEEE
Sivut4315-4319
Sivumäärä5
ISBN (elektroninen)978-1-5386-6249-6
ISBN (painettu)978-1-5386-6250-2
DOI - pysyväislinkit
TilaJulkaistu - syyskuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING -
Kesto: 1 tammikuuta 1900 → …

Julkaisusarja

NimiIEEE International Conference on Image Processing
ISSN (painettu)1522-4880
ISSN (elektroninen)2381-8549

Conference

ConferenceIEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING
Ajanjakso1/01/00 → …

Tiivistelmä

We present a learning-based optimization framework for depth of field extension, combining rigorous modeling of coded aperture imaging system and convolutional neural network based deblurring. The coded mask discretization is defined for desired depth range using wave optics based imaging model. Such approach significantly decreases the number of parameters to be optimized and increases the convergence speed of the network. We verify the proposed algorithm in different scenarios achieving superior or comparable performance with respect to existing methods.

Tutkimusalat

Julkaisufoorumi-taso