TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Low-latency Deep Clustering for Speech Separation

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
KustantajaIEEE
Sivut76-80
Sivumäärä5
ISBN (elektroninen)9781479981311
DOI - pysyväislinkit
TilaJulkaistu - 1 toukokuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Brighton, Iso-Britannia
Kesto: 12 toukokuuta 201917 toukokuuta 2019

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
MaaIso-Britannia
KaupunkiBrighton
Ajanjakso12/05/1917/05/19

Tiivistelmä

This paper proposes a low algorithmic latency adaptation of the deep clustering approach to speaker-independent speech separation. It consists of three parts: a) the usage of long-short-term-memory (LSTM) networks instead of their bidirectional variant used in the original work, b) using a short synthesis window (here 8 ms) required for low-latency operation, and, c) using a buffer in the beginning of audio mixture to estimate cluster centres corresponding to constituent speakers which are then utilized to separate speakers within the rest of the signal. The buffer duration would serve as an initialization phase after which the system is capable of operating with 8 ms algorithmic latency. We evaluate our proposed approach on two-speaker mixtures from Wall Street Journal (WSJ0) corpus. We observe that the use of LSTM yields around one dB lower SDR as compared to the baseline bidirectional LSTM in terms of source to distortion ratio (SDR). Moreover, using an 8 ms synthesis window instead of 32 ms degrades the separation performance by around 2.1 dB as compared to the baseline. Finally, we also report separation performance with different buffer durations noting that separation can be achieved even for buffer duration as low as 300 ms.