Mathematical modeling in systems biology
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry - 11th Italian Workshop, WIVACE 2016, Revised Selected Papers |
Kustantaja | Springer Verlag |
Sivut | 161-166 |
Sivumäärä | 6 |
ISBN (painettu) | 9783319577104 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Italian Workshop on Artificial Life and Evolutionary Computation - Kesto: 1 tammikuuta 2000 → … |
Julkaisusarja
Nimi | Communications in Computer and Information Science |
---|---|
Vuosikerta | 708 |
ISSN (painettu) | 1865-0929 |
Conference
Conference | Italian Workshop on Artificial Life and Evolutionary Computation |
---|---|
Ajanjakso | 1/01/00 → … |
Tiivistelmä
In this opinion paper we describe how mathematical models can serve as the foundation for communication within multidisciplinary research teams by providing a useful joint context. First we consider the role of mathematical modeling in systems biology in the light of our experiences in cancer research and other biological disciplines in the realm of big data. We examine the methodologies of machine learning, observing the differences between the modeling approach and the black box approach. Next, we consider the role of mathematical models in natural sciences, observing three simultaneous goals: prediction, knowledge accumulation, and communication. Finally, we consider the differences of the pathway model and the attractor model in describing genetic networks, and explore the long-standing criticality hypothesis, discussing its value in multidisciplinary research.