TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Mind reading with regularized multinomial logistic regression

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut1311-1325
JulkaisuMachine Vision and Applications
Vuosikerta24
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 2013
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In this paper, we consider the problem of multinomial classification of magnetoencephalography (MEG) data. The proposed method participated in the MEG mind reading competition of ICANN'11 conference, where the goal was to train a classifier for predicting the movie the test person was shown. Our approach was the best among 10 submissions, reaching accuracy of 68 % of correct classifications in this five category problem. The method is based on a regularized logistic regression model, whose efficient feature selection is critical for cases with more measurements than samples. Moreover, a special attention is paid to the estimation of the generalization error in order to avoid overfitting to the training data. Here, in addition to describing our competition entry in detail, we report selected additional experiments, which question the usefulness of complex feature extraction procedures and the basic frequency decomposition of MEG signal for this application.

Julkaisufoorumi-taso

Latausten tilastot

Ei tietoja saatavilla