TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Miniature CoCr laser welds under cyclic shear: Fatigue evolution and crack growth

Tutkimustuotosvertaisarvioitu

Standard

Miniature CoCr laser welds under cyclic shear : Fatigue evolution and crack growth. / Kanerva, M.; Besharat, Z.; Pärnänen, T.; Jokinen, J.; Honkanen, M.; Sarlin, E.; Göthelid, M.; Schlenzka, D.

julkaisussa: Journal of the Mechanical Behavior of Biomedical Materials, Vuosikerta 99, 01.11.2019, s. 93-103.

Tutkimustuotosvertaisarvioitu

Harvard

Kanerva, M, Besharat, Z, Pärnänen, T, Jokinen, J, Honkanen, M, Sarlin, E, Göthelid, M & Schlenzka, D 2019, 'Miniature CoCr laser welds under cyclic shear: Fatigue evolution and crack growth', Journal of the Mechanical Behavior of Biomedical Materials, Vuosikerta. 99, Sivut 93-103. https://doi.org/10.1016/j.jmbbm.2019.07.004

APA

Vancouver

Author

Kanerva, M. ; Besharat, Z. ; Pärnänen, T. ; Jokinen, J. ; Honkanen, M. ; Sarlin, E. ; Göthelid, M. ; Schlenzka, D. / Miniature CoCr laser welds under cyclic shear : Fatigue evolution and crack growth. Julkaisussa: Journal of the Mechanical Behavior of Biomedical Materials. 2019 ; Vuosikerta 99. Sivut 93-103.

Bibtex - Lataa

@article{9e36c4f8e76641e5908053b217fdfb50,
title = "Miniature CoCr laser welds under cyclic shear: Fatigue evolution and crack growth",
abstract = "Miniature laser welds with the root depth in the range of 50–300 μm represent air-tight joints between the components in medical devices, such as those in implants, growth rods, stents and various prostheses. The current work focuses on the development of a fatigue test specimen and procedure to determine fatigue lives of shear-loaded laser welds. A cobalt-chromium (CoCr) alloy is used as a benchmark case. S–N graphs, damage process, and fracture surfaces are studied by applying x-ray analysis, atomic force microscopy, and scanning electron microscopy both before and after the crack onset. A non-linear material model is fitted for the CoCr alloy to run finite element simulations of the damage and deformation. As a result, two tensile-loaded specimen designs are established and the performance is compared to that of a traditional torque-loaded specimen. The new generation specimens show less variation in the determined fatigue lives due to well-defined crack onset point and, therefore, precise weld seam load during the experiments. The fatigue damage concentrates to the welded material and the entire weld experiences fatigue prior to the final, fracture-governed failure phase. For the studied weld seams of hardened CoCr, a regression fatigue limit of 10.8–11.8 MPa, where the stress refers to the arithmetic average shear stress computed along the region dominated by shear loading, is determined.",
keywords = "CoCr, Crack growth, Fatigue, Implant, Laser weld",
author = "M. Kanerva and Z. Besharat and T. P{\"a}rn{\"a}nen and J. Jokinen and M. Honkanen and E. Sarlin and M. G{\"o}thelid and D. Schlenzka",
note = "EXT={"}P{\"a}rn{\"a}nen, T.{"}",
year = "2019",
month = "11",
day = "1",
doi = "10.1016/j.jmbbm.2019.07.004",
language = "English",
volume = "99",
pages = "93--103",
journal = "Journal of the Mechanical Behavior of Biomedical Materials",
issn = "1751-6161",
publisher = "Elsevier",

}

RIS (suitable for import to EndNote) - Lataa

TY - JOUR

T1 - Miniature CoCr laser welds under cyclic shear

T2 - Fatigue evolution and crack growth

AU - Kanerva, M.

AU - Besharat, Z.

AU - Pärnänen, T.

AU - Jokinen, J.

AU - Honkanen, M.

AU - Sarlin, E.

AU - Göthelid, M.

AU - Schlenzka, D.

N1 - EXT="Pärnänen, T."

PY - 2019/11/1

Y1 - 2019/11/1

N2 - Miniature laser welds with the root depth in the range of 50–300 μm represent air-tight joints between the components in medical devices, such as those in implants, growth rods, stents and various prostheses. The current work focuses on the development of a fatigue test specimen and procedure to determine fatigue lives of shear-loaded laser welds. A cobalt-chromium (CoCr) alloy is used as a benchmark case. S–N graphs, damage process, and fracture surfaces are studied by applying x-ray analysis, atomic force microscopy, and scanning electron microscopy both before and after the crack onset. A non-linear material model is fitted for the CoCr alloy to run finite element simulations of the damage and deformation. As a result, two tensile-loaded specimen designs are established and the performance is compared to that of a traditional torque-loaded specimen. The new generation specimens show less variation in the determined fatigue lives due to well-defined crack onset point and, therefore, precise weld seam load during the experiments. The fatigue damage concentrates to the welded material and the entire weld experiences fatigue prior to the final, fracture-governed failure phase. For the studied weld seams of hardened CoCr, a regression fatigue limit of 10.8–11.8 MPa, where the stress refers to the arithmetic average shear stress computed along the region dominated by shear loading, is determined.

AB - Miniature laser welds with the root depth in the range of 50–300 μm represent air-tight joints between the components in medical devices, such as those in implants, growth rods, stents and various prostheses. The current work focuses on the development of a fatigue test specimen and procedure to determine fatigue lives of shear-loaded laser welds. A cobalt-chromium (CoCr) alloy is used as a benchmark case. S–N graphs, damage process, and fracture surfaces are studied by applying x-ray analysis, atomic force microscopy, and scanning electron microscopy both before and after the crack onset. A non-linear material model is fitted for the CoCr alloy to run finite element simulations of the damage and deformation. As a result, two tensile-loaded specimen designs are established and the performance is compared to that of a traditional torque-loaded specimen. The new generation specimens show less variation in the determined fatigue lives due to well-defined crack onset point and, therefore, precise weld seam load during the experiments. The fatigue damage concentrates to the welded material and the entire weld experiences fatigue prior to the final, fracture-governed failure phase. For the studied weld seams of hardened CoCr, a regression fatigue limit of 10.8–11.8 MPa, where the stress refers to the arithmetic average shear stress computed along the region dominated by shear loading, is determined.

KW - CoCr

KW - Crack growth

KW - Fatigue

KW - Implant

KW - Laser weld

U2 - 10.1016/j.jmbbm.2019.07.004

DO - 10.1016/j.jmbbm.2019.07.004

M3 - Article

VL - 99

SP - 93

EP - 103

JO - Journal of the Mechanical Behavior of Biomedical Materials

JF - Journal of the Mechanical Behavior of Biomedical Materials

SN - 1751-6161

ER -