TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Mining itemset-based distinguishing sequential patterns with gap constraint

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
OtsikkoDatabase Systems for Advanced Applications - 20th International Conference, DASFAA 2015, Proceedings Hanoi, Vietnam, April 20-23, 2015 Proceedings, Part I
KustantajaSpringer Verlag
Sivut39-54
Sivumäärä16
Vuosikerta9049
ISBN (painettu)9783319181196
DOI - pysyväislinkit
TilaJulkaistu - 2015
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma20th International Conference on Database Systems for Advanced Applications, DASFAA 2015 - Hanoi, Vietnam
Kesto: 20 huhtikuuta 201523 huhtikuuta 2015

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta9049
ISSN (painettu)03029743
ISSN (elektroninen)16113349

Conference

Conference20th International Conference on Database Systems for Advanced Applications, DASFAA 2015
MaaVietnam
KaupunkiHanoi
Ajanjakso20/04/1523/04/15

Tiivistelmä

Mining contrast sequential patterns, which are sequential patterns that characterize a given sequence class and distinguish that class from another given sequence class, has a wide range of applications including medical informatics, computational finance and consumer behavior analysis. In previous studies on contrast sequential pattern mining, each element in a sequence is a single item or symbol. This paper considers a more general case where each element in a sequence is a set of items. The associated contrast sequential patterns will be called itemsetbased distinguishing sequential patterns (itemset-DSP). After discussing the challenges on mining itemset-DSP, we present iDSP-Miner, a mining method with various pruning techniques, for mining itemset-DSPs that satisfy given support and gap constraint. In this study, we also propose a concise border-like representation (with exclusive bounds) for sets of similar itemset-DSPs and use that representation to improve efficiency of our proposed algorithm. Our empirical study using both real data and synthetic data demonstrates that iDSP-Miner is effective and efficient.

Tutkimusalat