TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Model predictive control for regular linear systems

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli109066
JulkaisuAutomatica
Vuosikerta119
DOI - pysyväislinkit
TilaJulkaistu - 1 syyskuuta 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

The present work extends known finite-dimensional constrained optimal control realizations to the realm of well-posed regular linear infinite-dimensional systems modeled by partial differential equations. The structure-preserving Cayley–Tustin transformation is utilized to approximate the continuous-time system by a discrete-time model representation without using any spatial discretization or model reduction. The discrete-time model is utilized in the design of model predictive controller accounting for optimality, stabilization, and input and output/state constraints in an explicit way. The proposed model predictive controller is dual-mode in the sense that predictive controller steers the state to a set where exponentially stabilizing unconstrained feedback can be utilized without violating the constraints. The construction of the model predictive controller leads to a finite-dimensional constrained quadratic optimization problem easily solvable by standard numerical methods. Two representative examples of partial differential equations are considered.