TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Multi-view predictive latent space learning

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
JulkaisuPattern Recognition Letters
Varhainen verkossa julkaisun päivämäärä2018
DOI - pysyväislinkit
TilaJulkaistu - 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In unsupervised circumstances, multi-view learning seeks a shared latent representation by taking the consensus and complementary principles into account. However, most existing multi-view unsupervised learning approaches do not explicitly lay stress on the predictability of the latent space. In this paper, we propose a novel multi-view predictive latent space learning (MVP) model and apply it to multi-view clustering and unsupervised dimension reduction. The latent space is forced to be predictive by maximizing the correlation between the latent space and feature space of each view. By learning a multi-view graph with adaptive view-weight learning, MVP effectively combines the complementary information from multi-view data. Experimental results on benchmark datasets show that MVP outperforms the state-of-the-art multi-view clustering and unsupervised dimension reduction algorithms.