TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity

Tutkimustuotosvertaisarvioitu

Standard

Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity. / Saksala, Timo.

ISRM Congress 2015 Proceedings: Innovations in Applied and Theoretical Rock Mechanics. International Society for Rock Mechanics ISRM, 2015. 177.

Tutkimustuotosvertaisarvioitu

Harvard

Saksala, T 2015, Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity. julkaisussa ISRM Congress 2015 Proceedings: Innovations in Applied and Theoretical Rock Mechanics., 177, International Society for Rock Mechanics ISRM, ISRM International Congress on Rock Mechanics, 1/01/00.

APA

Saksala, T. (2015). Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity. teoksessa ISRM Congress 2015 Proceedings: Innovations in Applied and Theoretical Rock Mechanics [177] International Society for Rock Mechanics ISRM.

Vancouver

Saksala T. Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity. julkaisussa ISRM Congress 2015 Proceedings: Innovations in Applied and Theoretical Rock Mechanics. International Society for Rock Mechanics ISRM. 2015. 177

Author

Saksala, Timo. / Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity. ISRM Congress 2015 Proceedings: Innovations in Applied and Theoretical Rock Mechanics. International Society for Rock Mechanics ISRM, 2015.

Bibtex - Lataa

@inproceedings{feb11e1928764803975559941663aafc,
title = "Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity",
abstract = "In this paper, the embedded discontinuity approach is applied to finite element modeling of rock fracture. A rate-dependent constitutive model based on the embedded displacement discontinuity theory is developed to describe the mode I, mode II and mixed mode fracture of rock in tension and compression. The bulk material is described as linear elastic until reaching the elastic limit. Beyond this limit, a rate-dependent exponential softening law governs the evolution of the embedded displacement jump. The present approach incorporates the rock heterogeneity by random description of the mineral texture of rock. Moreover, the inherent initial microcrack populations of natural rocks are accounted for as randomly oriented embedded discontinuities. Numerical examples demonstrate the model behavior in uniaxial compression and tension. The effect of loading rate and confining pressure is tested as well in 2D numerical simulations. These simulations show that the model captures the main features of rock in confined compression and uniaxial tension. The developed method has the computational efficiency of continuum plasticity models. However, it has an important advantage of accounting for the orientation of introduced microcracks.",
author = "Timo Saksala",
year = "2015",
language = "English",
booktitle = "ISRM Congress 2015 Proceedings",
publisher = "International Society for Rock Mechanics ISRM",

}

RIS (suitable for import to EndNote) - Lataa

TY - GEN

T1 - Numerical modelling of rock fracture with the embedded discontinuity approach incorporating heterogeneity

AU - Saksala, Timo

PY - 2015

Y1 - 2015

N2 - In this paper, the embedded discontinuity approach is applied to finite element modeling of rock fracture. A rate-dependent constitutive model based on the embedded displacement discontinuity theory is developed to describe the mode I, mode II and mixed mode fracture of rock in tension and compression. The bulk material is described as linear elastic until reaching the elastic limit. Beyond this limit, a rate-dependent exponential softening law governs the evolution of the embedded displacement jump. The present approach incorporates the rock heterogeneity by random description of the mineral texture of rock. Moreover, the inherent initial microcrack populations of natural rocks are accounted for as randomly oriented embedded discontinuities. Numerical examples demonstrate the model behavior in uniaxial compression and tension. The effect of loading rate and confining pressure is tested as well in 2D numerical simulations. These simulations show that the model captures the main features of rock in confined compression and uniaxial tension. The developed method has the computational efficiency of continuum plasticity models. However, it has an important advantage of accounting for the orientation of introduced microcracks.

AB - In this paper, the embedded discontinuity approach is applied to finite element modeling of rock fracture. A rate-dependent constitutive model based on the embedded displacement discontinuity theory is developed to describe the mode I, mode II and mixed mode fracture of rock in tension and compression. The bulk material is described as linear elastic until reaching the elastic limit. Beyond this limit, a rate-dependent exponential softening law governs the evolution of the embedded displacement jump. The present approach incorporates the rock heterogeneity by random description of the mineral texture of rock. Moreover, the inherent initial microcrack populations of natural rocks are accounted for as randomly oriented embedded discontinuities. Numerical examples demonstrate the model behavior in uniaxial compression and tension. The effect of loading rate and confining pressure is tested as well in 2D numerical simulations. These simulations show that the model captures the main features of rock in confined compression and uniaxial tension. The developed method has the computational efficiency of continuum plasticity models. However, it has an important advantage of accounting for the orientation of introduced microcracks.

UR - https://security.gibsongroup.ca/isrm/calendar.php

M3 - Conference contribution

BT - ISRM Congress 2015 Proceedings

PB - International Society for Rock Mechanics ISRM

ER -