On the arity gap of finite functions: Results and applications
Tutkimustuotos: Katsausartikkeli › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Sivut | 193-207 |
Sivumäärä | 15 |
Julkaisu | Journal of Multiple-Valued Logic and Soft Computing |
Vuosikerta | 27 |
Numero | 2-3 |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A2 Katsausartikkeli |
Tiivistelmä
Let A be a finite set and B an arbitrary set with at least two elements. The arity gap of a function f : An → B is the minimum decrease in the number of essential variables when essential variables of f are identified. A non- Trivial fact is that the arity gap of such B-valued functions on A is at most |A|. Even less trivial to verify is the fact that the arity gap of B-valued functions on A with more than |A| essential variables is at most 2. These facts ask for a classification of B-valued functions on A in terms of their arity gap. In this paper, we survey what is known about this problem. We present a general characterization of the arity gap of B-valued functions on A and provide explicit classifications of the arity gap of Boolean and pseudo-Boolean functions. Moreover, we reveal unsettled questions related to this topic, and discuss links and possible applications of some results to other subjects of research.