TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

On the Fine-Grained Complexity of Rainbow Coloring

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko24th Annual European Symposium on Algorithms (ESA 2016)
ToimittajatPiotr Sankowski, Christos Zaroliagis
Vuosikerta57
ISBN (elektroninen)978-3-95977-015-6
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEUROPEAN SYMPOSIUM ON ALGORITHMS -
Kesto: 1 tammikuuta 1900 → …

Julkaisusarja

NimiLeibniz International Proceedings in Informatics (LIPIcs)
Vuosikerta57
ISSN (elektroninen)1868-8969

Conference

ConferenceEUROPEAN SYMPOSIUM ON ALGORITHMS
Ajanjakso1/01/00 → …

Tiivistelmä

The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any k >= 2, there is no algorithm for Rainbow k-Coloring running in time 2^{o(n^{3/2})}, unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In the Subset Rainbow k-Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set S of pairs of vertices and we ask if there is a coloring in which all the pairs in S are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by |S|. We also study Subset Rainbow k-Coloring problem, where we are additionally given an integer q and we ask if there is a coloring in which at least q anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by q and has a kernel of size O(q) for every k >= 2, extending the result of Ananth et al. [FSTTCS 2011]. We believe that our techniques used for the lower bounds may shed some light on the complexity of the classical Edge Coloring problem, where it is a major open question if a 2^{O(n)}-time algorithm exists.

Tutkimusalat

Julkaisufoorumi-taso

Tilastokeskuksen tieteenalat