TUTCRIS - Tampereen teknillinen yliopisto


Outlier edge detection using random graph generation models and applications

Tutkimustuotos: vertaisarvioituArtikkeli


JulkaisuJournal of Big Data
Lehden numero1
DOI - pysyväislinkit
TilaJulkaistu - 1 joulukuuta 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli


Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Detecting outlier nodes and edges is important for data mining and graph analytics. However, previous research in the field has merely focused on detecting outlier nodes. In this article, we study the properties of edges and propose effective outlier edge detection algorithm. The proposed algorithms are inspired by community structures that are very common in social networks. We found that the graph structure around an edge holds critical information for determining the authenticity of the edge. We evaluated the proposed algorithms by injecting outlier edges into some real-world graph data. Experiment results show that the proposed algorithms can effectively detect outlier edges. In particular, the algorithm based on the Preferential Attachment Random Graph Generation model consistently gives good performance regardless of the test graph data. More important, by analyzing the authenticity of the edges in a graph, we are able to reveal underlying structure and properties of a graph. Thus, the proposed algorithms are not limited in the area of outlier edge detection. We demonstrate three different applications that benefit from the proposed algorithms: (1) a preprocessing tool that improves the performance of graph clustering algorithms; (2) an outlier node detection algorithm; and (3) a novel noisy data clustering algorithm. These applications show the great potential of the proposed outlier edge detection techniques. They also address the importance of analyzing the edges in graph mining—a topic that has been mostly neglected by researchers.