TUTCRIS - Tampereen teknillinen yliopisto


Perceptual dominant color extraction by multidimensional particle swarm optimization



JulkaisuEurasip Journal on Advances in Signal Processing
DOI - pysyväislinkit
TilaJulkaistu - 2009
OKM-julkaisutyyppiA1 Alkuperäisartikkeli


Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utmost importance since the human visual system primarily uses them for perception and similarity judgment. In this paper, we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO) for finding optimal (number of) dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multidimensional (MD) PSO can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergence due to lack of divergence. To address this problem we then apply Fractional Global Best Formation (FGBF) technique. In order to extract perceptually important colors and to further improve the discrimination factor for a better clustering performance, an efficient color distance metric, which uses a fuzzy model for computing color (dis-) similarities over HSV (or HSL) color space is proposed. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.