TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Porous polybutylene succinate films enabling adhesion of human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE)

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut78-87
Sivumäärä10
JulkaisuEuropean Polymer Journal
Vuosikerta118
DOI - pysyväislinkit
TilaJulkaistu - 1 syyskuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

In the last decade, several studies have shown that polybutylene succinate (PBSu)has a high potential as a biomaterial enabling cell adhesion and growth. In this study, porous PBSu films have been prepared by the breath figure method (BF)and by particulate leaching (PL), and characterized in terms of thickness, surface properties, diffusion capacity and in vitro stability. Because porous films are of high interest for tissue engineering of retinal pigment epithelium (RPE), the initial viability and adhesion of human embryonic stem cell-derived RPE onto the PBSu films was then evaluated. To the best of our knowledge, this is the first study on the adhesion behavior of hESC-RPE onto porous and biodegradable polymer surfaces. The results clearly demonstrated that the two manufacturing methods produced materials with very distinct properties. Films produced by BF expressively demonstrated the highest roughness and surface area, and the lowest water contact angle. These features likely contributed to increase the biocompatibility of the surface, particularly when coated with laminin and collagen IV, as observed by the improved cell viability, cell morphology, adhesion and production of extracellular matrix proteins. Altogether, our results showed not only that PBSu holds high potential in retinal tissue engineering, but also that the physical properties and biocompatibility of the material are highly dependent on the adopted casting method.