TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Position Estimation for Drones based on Visual SLAM and IMU in GPS-denied Environment

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
OtsikkoICRoM 2019 - 7th International Conference on Robotics and Mechatronics
KustantajaIEEE
Sivut120-124
Sivumäärä5
ISBN (elektroninen)9781728166049
DOI - pysyväislinkit
TilaJulkaistu - 1 marraskuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma7th International Conference on Robotics and Mechatronics, ICRoM 2019 - Tehran, Iran
Kesto: 20 marraskuuta 201921 marraskuuta 2019

Conference

Conference7th International Conference on Robotics and Mechatronics, ICRoM 2019
MaaIran
KaupunkiTehran
Ajanjakso20/11/1921/11/19

Tiivistelmä

Due to the increased rate of drone usage in various commercial and industrial fields, the need for their autonomous operation is rapidly increasing. One major aspect of autonomous movement is the ability to operate safely in an unknown environment. The majority of current works are persistently using a global positioning system (GPS) to directly find the absolute position of the drone. However, GPS accuracy might be not suitable in some applications and this solution is not applicable to all situations. In this paper, a positioning system based on monocular SLAM and inertial measurement unit (IMU) is presented. The position is calculated through the semi-direct visual odometry (SVO) method alongside IMU data, and is integrated with an extended Kalman filter (EKF) to enhance the efficiency of the algorithm. The data is then employed to control the drone without any requirement to any source of external input. The experiment results for long-distance flying paths is very promising.