Projections for Approximate Policy Iteration Algorithms
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 36th International Conference on Machine Learning, ICML 2019 |
Kustantaja | PMLR |
Sivut | 267-276 |
ISBN (elektroninen) | 9781510886988 |
Tila | Julkaistu - kesäkuuta 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Machine Learning - Long Beach, Yhdysvallat Kesto: 9 kesäkuuta 2019 → 15 kesäkuuta 2019 |
Conference
Conference | International Conference on Machine Learning |
---|---|
Maa | Yhdysvallat |
Kaupunki | Long Beach |
Ajanjakso | 9/06/19 → 15/06/19 |
Tiivistelmä
Approximate policy iteration is a class of reinforcement learning (RL) algorithms where the policy is encoded using a function approximator and which has been especially prominent in RL with continuous action spaces. In this class of RL algorithms, ensuring increase of the policy return during policy update often requires to constrain the change in action distribution. Several approximations exist in the literature to solve this constrained policy update problem. In this paper, we propose to improve over such solutions by introducing a set of projections that transform the constrained problem into an unconstrained one which is then solved by standard gradient descent. Using these projections, we empirically demonstrate that our approach can improve the policy update solution and the control over exploration of existing approximate policy iteration algorithms.