Relations and bounds for the zeros of graph polynomials using vertex orbits
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 125239 |
Julkaisu | Applied Mathematics and Computation |
Vuosikerta | 380 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 syyskuuta 2020 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli |
Tiivistelmä
In this paper, we prove bounds for the unique, positive zero of OG ★(z):=1−OG(z), where OG(z) is the so-called orbit polynomial [1]. The orbit polynomial is based on the multiplicity and cardinalities of the vertex orbits of a graph. In [1], we have shown that the unique, positive zero δ ≤ 1 of OG ★(z) can serve as a meaningful measure of graph symmetry. In this paper, we study special graph classes with a specified number of orbits and obtain bounds on the value of δ.