Representative class vector clustering-based discriminant analysis
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - 2013 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013 |
Kustantaja | IEEE COMPUTER SOCIETY PRESS |
Sivut | 526-529 |
Sivumäärä | 4 |
ISBN (painettu) | 9780769551203 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2013 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013 - Beijing, Kiina Kesto: 16 lokakuuta 2013 → 18 lokakuuta 2013 |
Conference
Conference | 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013 |
---|---|
Maa | Kiina |
Kaupunki | Beijing |
Ajanjakso | 16/10/13 → 18/10/13 |
Tiivistelmä
Clustering-based Discriminant Analysis (CDA) is a well-known technique for supervised feature extraction and dimensionality reduction. CDA determines an optimal discriminant subspace for linear data projection based on the assumptions of normal subclass distributions and subclass representation by using the mean subclass vector. However, in several cases, there might be other subclass representative vectors that could be more discriminative, compared to the mean subclass vectors. In this paper we propose an optimization scheme aiming at determining the optimal subclass representation for CDA-based data projection. The proposed optimization scheme has been evaluated on standard classification problems, as well as on two publicly available human action recognition databases providing enhanced class discrimination, compared to the standard CDA approach.