Revisiting gray pixel for statistical illumination estimation
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | VISIGRAPP 2019 - Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
Toimittajat | Andreas Kerren, Christophe Hurter, Jose Braz |
Kustantaja | SCITEPRESS |
Sivut | 36-46 |
Sivumäärä | 11 |
ISBN (elektroninen) | 9789897583544 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Computer Vision Theory and Applications - Prague, Tshekki Kesto: 25 helmikuuta 2019 → 27 helmikuuta 2019 |
Conference
Conference | International Conference on Computer Vision Theory and Applications |
---|---|
Maa | Tshekki |
Kaupunki | Prague |
Ajanjakso | 25/02/19 → 27/02/19 |
Tiivistelmä
We present a statistical color constancy method that relies on novel gray pixel detection and mean shift clustering. The method, called Mean Shifted Grey Pixel – MSGP, is based on the observation: true-gray pixels are aligned towards one single direction. Our solution is compact, easy to compute and requires no training. Experiments on two real-world benchmarks show that the proposed approach outperforms state-of-the-art methods in the camera-agnostic scenario. In the setting where the camera is known, MSGP outperforms all statistical methods.