TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

SCIP: a single-cell image processor toolbox

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut4318-4320
Sivumäärä3
JulkaisuBioinformatics
Vuosikerta34
Numero24
DOI - pysyväislinkit
TilaJulkaistu - 15 joulukuuta 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

Summary: Each cell is a phenotypically unique individual that is influenced by internal and external processes, operating in parallel. To characterize the dynamics of cellular processes one needs to observe many individual cells from multiple points of view and over time, so as to identify commonalities and variability. With this aim, we engineered a software, 'SCIP', to analyze multi-modal, multi-process, time-lapse microscopy morphological and functional images. SCIP is capable of automatic and/or manually corrected segmentation of cells and lineages, automatic alignment of different microscopy channels, as well as detect, count and characterize fluorescent spots (such as RNA tagged by MS2-GFP), nucleoids, Z rings, Min system, inclusion bodies, undefined structures, etc. The results can be exported into *mat files and all results can be jointly analyzed, to allow studying not only each feature and process individually, but also find potential relationships. While we exemplify its use on Escherichia coli, many of its functionalities are expected to be of use in analyzing other prokaryotes and eukaryotic cells as well. We expect SCIP to facilitate the finding of relationships between cellular processes, from small-scale (e.g. gene expression) to large-scale (e.g. cell division), in single cells and cell lineages. Availability and implementation: http://www.ca3-uninova.org/project_scip. Supplementary information: Supplementary data are available at Bioinformatics online.