Zou J, Hannula M, Lehto K, Feng H, Lähelmä J, Aula AS et al. X-ray microtomographic confirmation of the reliability of CBCT in identifying the scalar location of cochlear implant electrode after round window insertion. Hearing Research. 2015 elo 1;326:59-65. https://doi.org/10.1016/j.heares.2015.04.005

Ylä-Outinen L, Tanskanen JMA, Kapucu FE, Hyysalo A, Hyttinen JAK, Narkilahti S. Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis. julkaisussa In Vitro Neuronal Networks: From Culturing Methods to Neuro-Technological Applications. Springer New York LLC. 2019. s. 299-329. (Advances in Neurobiology). https://doi.org/10.1007/978-3-030-11135-9_13

Xiao L, Liao B, Li S, Chen K. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Networks. 2018 helmi;98:102-113. https://doi.org/10.1016/j.neunet.2017.11.011

Wortha SM, Bloechle J, Ninaus M, Kiili K, Lindstedt A, Bahnmueller J et al. Neurofunctional plasticity in fraction learning: An fMRI training study. Trends in Neuroscience and Education. 2020 joulu 1;21. 100141. https://doi.org/10.1016/j.tine.2020.100141

Waris MA, Iosifidis A, Gabbouj M. CNN-based edge filtering for object proposals. Neurocomputing. 2017 kesä 2;266:631-640. https://doi.org/10.1016/j.neucom.2017.05.071

Vuorio J, Vattulainen I, Martinez-Seara H. Atomistic fingerprint of hyaluronan–CD44 binding. PLoS Computational Biology. 2017 heinä 1;13(7). e1005663. https://doi.org/10.1371/journal.pcbi.1005663

Välkki IA, Lenk K, Mikkonen JE, Kapucu FE, Hyttinen JAK. Network-wide adaptive burst detection depicts neuronal activity with improved accuracy. Frontiers in Computational Neuroscience. 2017 touko 31;11. 40. https://doi.org/10.3389/fncom.2017.00040

Tran DT, Iosifidis A, Gabbouj M. Improving efficiency in convolutional neural networks with multilinear filters. Neural Networks. 2018 syys 1;105:328-339. https://doi.org/10.1016/j.neunet.2018.05.017

Tohka J, Moradi E, Huttunen H, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Neuroimaging Initiative 2. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia. Neuroinformatics. 2016;14(3):279-296. https://doi.org/10.1007/s12021-015-9292-3

Teppola H, Sarkanen JR, Jalonen TO, Linne M-L. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol. Neurochemical Research. 2016;41(4):731-747. https://doi.org/10.1007/s11064-015-1743-6

Teppola H, Aćimović J, Linne ML. Unique Features of Network Bursts Emerge From the Complex Interplay of Excitatory and Inhibitory Receptors in Rat Neocortical Networks. FRONTIERS IN CELLULAR NEUROSCIENCE. 2019 syys 6;13. 377. https://doi.org/10.3389/fncel.2019.00377

Tenhunen M, Huupponen E, Hasan J, Heino O, Himanen SL. Evaluation of the different sleep-disordered breathing patterns of the compressed tracheal sound. Clinical Neurophysiology. 2015 elo 1;126(8):1557-1563. https://doi.org/10.1016/j.clinph.2014.11.003

Tenhunen M, Hasan J, Himanen SL. Assessment of respiratory effort during sleep with noninvasive techniques. Sleep Medicine Reviews. 2015 joulu 1;24:103-104. https://doi.org/10.1016/j.smrv.2015.08.010

Tavakoli HR, Borji A, Kannala J, Rahtu E. Deep audio-visual saliency: Baseline model and data. julkaisussa Spencer SN, toimittaja, Proceedings ETRA 2020 Short Papers - ACM Symposium on Eye Tracking Research and Applications, ETRA 2020. ACM. 2020. 3 https://doi.org/10.1145/3379156.3391337

Tanskanen JMA, Kapucu FE, Välkki I, Hyttinen JAK. Automatic objective thresholding to detect neuronal action potentials. julkaisussa Proceedings of 2016 24th European Signal Processing Conference (EUSIPCO). 2016. s. 662-666 https://doi.org/10.1109/EUSIPCO.2016.7760331

Sun L, Peräkylä J, Polvivaara M, Öhman J, Peltola J, Lehtimäki K et al. Human anterior thalamic nuclei are involved in emotion-attention interaction. NEUROPSYCHOLOGIA. 2015 marras 1;78:88-94. https://doi.org/10.1016/j.neuropsychologia.2015.10.001

Spruijt-Metz D, Hekler E, Saranummi N, Intille S, Korhonen I, Nilsen W et al. Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Translational Behavioral Medicine. 2015 syys 17;5(3):335-346. https://doi.org/10.1007/s13142-015-0324-1

Špakov O, Gizatdinova Y. Real-time hidden gaze point correction. julkaisussa Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2014. Association for Computing Machinery. 2014. s. 291-294 https://doi.org/10.1145/2578153.2578200

Špakov O, Isokoski P, Majaranta P. Look and lean: Accurate head-assisted eye pointing. julkaisussa Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2014. Association for Computing Machinery. 2014. s. 35-42 https://doi.org/10.1145/2578153.2578157

Špakov O. Comparison of eye movement filters used in HCI. julkaisussa Proceedings - ETRA 2012: Eye Tracking Research and Applications Symposium. 2012. s. 281-284 https://doi.org/10.1145/2168556.2168616

Sonkajärvi E, Rytky S, Alahuhta S, Suominen K, Kumpulainen T, Ohtonen P et al. Epileptiform and periodic EEG activities induced by rapid sevoflurane anaesthesia induction. Clinical Neurophysiology. 2018 maalis 1;129(3):638-645. https://doi.org/10.1016/j.clinph.2017.12.037

Sibolt G, Curtze S, Melkas S, Pohjasvaara T, Kaste M, Karhunen PJ et al. Severe cerebral white matter lesions in ischemic stroke patients are associated with less time spent at home and early institutionalization. INTERNATIONAL JOURNAL OF STROKE. 2015 joulu 1;10(8):1192-1196. https://doi.org/10.1111/ijs.12578

Sibolt G, Curtze S, Melkas S, Pohjasvaara T, Kaste M, Karhunen PJ et al. Post-stroke depression and depression-executive dysfunction syndrome are associated with recurrence of ischaemic stroke. CEREBROVASCULAR DISEASES. 2013 joulu;36(5-6):336-343. https://doi.org/10.1159/000355145

Sharmin S, Špakov O, Räihä KJ. The effect of different text presentation formats on eye movement metrics in reading. JOURNAL OF EYE MOVEMENT RESEARCH. 2012;5(3). 3.

Sharma V, Bala A, Deshmukh R, Bedi KL, Sharma PL. Neuroprotective effect of RO-20-1724-a phosphodiesterase4 inhibitor against intracerebroventricular streptozotocin induced cognitive deficit and oxidative stress in rats. PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR. 2012 huhti;101(2):239-245. https://doi.org/10.1016/j.pbb.2012.01.004

Sharma V, Dixit D, Ghosh S, Sen E. COX-2 regulates the proliferation of glioma stem like cells. NEUROCHEMISTRY INTERNATIONAL. 2011 loka;59(5):567-571. https://doi.org/10.1016/j.neuint.2011.06.018

Sciacca MFM, Romanucci V, Zarrelli A, Monaco I, Lolicato F, Spinella N et al. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chemical Neuroscience. 2017 elo 16;8(8):1767-1778. https://doi.org/10.1021/acschemneuro.7b00110

Saurus P, Kuusela S, Lehtonen E, Hyvönen ME, Ristola M, Fogarty CL et al. Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway. CELL DEATH AND DISEASE. 2015 touko 1;6(5). e1752. https://doi.org/10.1038/cddis.2015.125

Satuvuori E, Mulansky M, Bozanic N, Malvestio I, Zeldenrust F, Lenk K et al. Measures of spike train synchrony for data with multiple time scales. Journal of Neuroscience Methods. 2017 elo 1;287:25-38. https://doi.org/10.1016/j.jneumeth.2017.05.028

Salminen AV, Manconi M, Rimpilä V, Luoto TM, Koskinen E, Ferri R et al. Disconnection between periodic leg movements and cortical arousals in spinal cord injury. JOURNAL OF CLINICAL SLEEP MEDICINE. 2013;9(11):1207-1209. https://doi.org/10.5664/jcsm.3174

Saarela C, Karrasch M, Ilvesmäki T, Parkkola R, Rinne JO, Laine M. The relationship between recognition memory for emotion-laden words and white matter microstructure in normal older individuals. NeuroReport. 2016 marras 1;27(18):1345-1349. https://doi.org/10.1097/WNR.0000000000000704

Rönkkö T, Timonen H. Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas. Journal of Alzheimer's Disease. 2019;72(1):15-28. https://doi.org/10.3233/JAD-190170

Rimpiläinen V, Koulouri A, Lucka F, Kaipio JP, Wolters CH. Improved EEG source localization with Bayesian uncertainty modelling of unknown skull conductivity. NeuroImage. 2019 maalis 1;188:252-260. https://doi.org/10.1016/j.neuroimage.2018.11.058

Rezaei A, Koulouri A, Pursiainen S. Randomized Multiresolution Scanning in Focal and Fast E/MEG Sensing of Brain Activity with a Variable Depth. Brain Topography. 2020;33(2):161-175. https://doi.org/10.1007/s10548-020-00755-8

Pursiainen S, Agsten B, Wagner S, Wolters CH. Advanced boundary electrode modeling for tES and parallel tES/EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017;26(1):37-44. https://doi.org/10.1109/TNSRE.2017.2748930

Puhakka IJA, Peltola MJ. Salivary cortisol reactivity to psychological stressors in infancy: A meta-analysis. PSYCHONEUROENDOCRINOLOGY. 2020 touko 1;115. 104603. https://doi.org/10.1016/j.psyneuen.2020.104603

Polinati PP, Ilmarinen T, Trokovic R, Hyotylainen T, Otonkoski T, Suomalainen A et al. Patient-specific induced pluripotent stem cell—derived RPE cells: Understanding the pathogenesis of retinopathy in long-chain 3-hydroxyacyl-CoA dehydrogenase deiciency. Investigative Ophthalmology and Visual Science. 2015;56(5):3371-3382. https://doi.org/10.1167/iovs.14-14007

Pelkonen A, Kallunki P, Yavich L. Effects of exogenous alpha-synuclein on stimulated dopamine overflow in dorsal striatum. Neuroscience Letters. 2013 loka 25;554:141-145. https://doi.org/10.1016/j.neulet.2013.08.072

Pelkonen A, Yavich L. Cortical spreading depression in alpha-synuclein knockout mice. SYNAPSE. 2012 tammi;66(1):81-84. https://doi.org/10.1002/syn.20980

Pelkonen A, Yavich L. Neuromuscular pathology in mice lacking alpha-synuclein. Neuroscience Letters. 2011 tammi 10;487(3):350-353. https://doi.org/10.1016/j.neulet.2010.10.054

Pantsar T, Rissanen S, Dauch D, Laitinen T, Vattulainen I, Poso A. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. PLoS Computational Biology. 2018 syys 10;14(9). e1006458. https://doi.org/10.1371/journal.pcbi.1006458

Pajula J, Tohka J. How Many Is Enough? Effect of Sample Size in Inter-Subject Correlation Analysis of fMRI. Computational Intelligence and Neuroscience. 2016;2016. 2094601. https://doi.org/10.1155/2016/2094601

Pajarinen J, Peltonen J, Uusitalo MA. Fault tolerant machine learning for nanoscale cognitive radio. Neurocomputing. 2011 helmi;74(5):753-764. https://doi.org/10.1016/j.neucom.2010.10.007

Otterpohl JR, Haynes JD, Emmert-Streib F, Vetter G, Pawelzik K. Extracting the dynamics of perceptual switching from 'noisy' behaviour: An application of hidden Markov modelling to pecking data from pigeons. Journal of Physiology: Paris. 2000;94(5-6):555-567. https://doi.org/10.1016/S0928-4257(00)01095-0

Otterpohl JR, Emmert-Streib F, Pawelzik K. A constrained HMM-based approach to the estimation of perceptual switching dynamics in pigeons. Neurocomputing. 2001 kesä;38-40:1495-1501. https://doi.org/10.1016/S0925-2312(01)00511-2

Otterpohl JR, Haynes JD, Emmert-Streib F, Vetter G, Pawelzik K. Erratum: Extracting the dynamics of perceptual switching from 'noisy' behaviour: An application of hidden Markov modelling to pecking data from pigeons (Journal of Physiology Paris (2000) 94:5-6 (555-567) PII: S0928425700010950). Journal of Physiology: Paris. 2001;95(1-6):497. https://doi.org/10.1016/S0928-4257(01)00091-2

Oschmann F, Berry H, Obermayer K, Lenk K. From in silico astrocyte cell models to neuron-astrocyte network models: A review. BRAIN RESEARCH BULLETIN. 2018;136:76-84. https://doi.org/10.1016/j.brainresbull.2017.01.027

Ormiskangas J, Valtonen O, Kivekäs I, Dean M, Poe D, Järnstedt J et al. Assessment of PIV performance in validating CFD models from nasal cavity CBCT scans. Respiratory Physiology and Neurobiology. 2020 marras 1;282. 103508. https://doi.org/10.1016/j.resp.2020.103508

Nevalainen O, Auvinen A, Ansakorpi H, Raitanen J, Isojärvi J. Autoimmunity-related immunological serum markers and survival in a tertiary care cohort of adult patients with epilepsy. EPILEPSY RESEARCH. 2014 marras 1;108(9):1675-1679. https://doi.org/10.1016/j.eplepsyres.2014.08.014

Nevalainen O, Auvinen A, Ansakorpi H, Artama M, Raitanen J, Isojärvi J. Mortality by clinical characteristics in a tertiary care cohort of adult patients with chronic epilepsy. EPILEPSIA. 2012 joulu;53(12). https://doi.org/10.1111/epi.12006

Natarajan R, Einarsdottir E, Riutta A, Hagman S, Raunio M, Mononen N et al. Melatonin pathway genes are associated with progressive subtypes and disability status in multiple sclerosis among Finnish patients. JOURNAL OF NEUROIMMUNOLOGY. 2012 syys 15;250(1-2):106-110. https://doi.org/10.1016/j.jneuroim.2012.05.014

Möttönen T, Katisko J, Haapasalo J, Tähtinen T, Kiekara T, Kähärä V et al. Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: Delineation using 3 T MRI and intraoperative microelectrode recording. NeuroImage: Clinical. 2015;7:823-829. https://doi.org/10.1016/j.nicl.2015.03.001

Moradi E, Khundrakpam B, Lewis JD, Evans AC, Tohka J. Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. NeuroImage. 2017;144(A):128–141. https://doi.org/10.1016/j.neuroimage.2016.09.049

Mokkila S, Postila PA, Rissanen S, Juhola H, Vattulainen I, Róg T. Calcium Assists Dopamine Release by Preventing Aggregation on the Inner Leaflet of Presynaptic Vesicles. ACS Chemical Neuroscience. 2017 kesä 21;8(6):1242-1250. https://doi.org/10.1021/acschemneuro.6b00395

Miinalainen T, Rezaei A, Us D, Nüßing A, Engwer C, Wolters CH et al. A realistic, accurate and fast source modeling approach for the EEG forward problem. NeuroImage. 2019;184(1):56-67. https://doi.org/10.1016/j.neuroimage.2018.08.054

Melkas S, Sibolt G, Oksala NKJ, Putaala J, Pohjasvaara T, Kaste M et al. Extensive white matter changes predict stroke recurrence up to 5 years after a first-ever ischemic stroke. CEREBROVASCULAR DISEASES. 2012 loka;34(3):191-198. https://doi.org/10.1159/000341404

Malmivaara K, Ohman J, Kivisaari R, Hernesniemi J, Siironen J. Cost-effectiveness of decompressive craniectomy in non-traumatic neurological emergencies. European Journal of Neurology. 2011 maalis;18(3):402-409. https://doi.org/10.1111/j.1468-1331.2010.03162.x

Mäkinen M, Joki T, Ylä-Outinen L, Skottman H, Narkilahti S, Äänismaa R. Fluorescent probes as a tool for cell population tracking in spontaneously active neural networks derived from human pluripotent stem cells. Journal of Neuroscience Methods. 2013 huhti;215(1):88-96. https://doi.org/10.1016/j.jneumeth.2013.02.019

Mäki-Marttunen TM, Acimovic J, Ruohonen KP, Linne M-L. On the effect of network structure and synaptic mechanisms on sustained bursting activity. julkaisussa Cymbalyuk G, Prinz A, toimittajat, Twenty Second Annual Computational Neuroscience Meeting: CNS*2013. Vuosikerta Volume 14 Suppl 1. Paris, France: BioMed Central. 2013. s. P247

Mäki-Marttunen TM, Acimovic J, Ruohonen KP, Linne M-L. Effects of local structure of neuronal networks on spiking activity in silico. julkaisussa Fellous J-M, Prinz A, toimittajat, Twentieth Annual Computational Neuroscience Meeting: CNS*2011. Vuosikerta 12 (Suppl 1). Stockholm: BioMed Central. 2011. s. P202

Mäki-Marttunen T, Acimovic J, Ruohonen K, Linne M-L. Effects of structure on spontaneous activity in simulated neuronal networks. julkaisussa Proceedings of Mathematical Neuroscience (ICMS 2011), April 11-13, 2011, Edinburgh, Scotland. 2011

Mäki-Marttunen TM, Acimovic J, Ruohonen KP, Linne M-L. Significance of graph theoretic measures in predicting neuronal network activity. julkaisussa Proceedings of The 9th annual Computational and Systems Neuroscience meeting (COSYNE 2012). Salt Lake City. 2012. s. 55-55. I-15

Mäki-Marttunen TM, Acimovic J, Ruohonen KP, Linne M-L. In silico study on structure and dynamics in bursting neuronal networks. julkaisussa Neuroscience 2012; 42nd Annual Meeting, New Orleans, USA, October 14-18, 2012. Society for Neuroscience (SfN). 2012. 300.26/DDD70

Lolicato F, Juhola H, Zak A, Postila PA, Saukko A, Rissanen S et al. Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor. ACS Chemical Neuroscience. 2020;11(13):1914–1924. https://doi.org/10.1021/acschemneuro.9b00656

Lenk K, Satuvuori E, Lallouette J, Ladrón-de-Guevara A, Berry H, Hyttinen JAK. A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate. Frontiers in Computational Neuroscience. 2020 tammi 22;13. 92. https://doi.org/10.3389/fncom.2019.00092

Lehtimäki M, Paunonen L, Linne M-L. Improvement of computational efficiency of a biochemical plasticity model. BMC Neuroscience. 2018 syys 29;19(Suppl 2):66-66. P130. https://doi.org/10.1186/s12868-018-0452-x#Sec613

Kreutzer J, Ylä-Outinen L, Mäki A, Ristola M, Narkilahti S, Kallio P. Cell culture chamber with gas supply for prolonged recording of human neuronal cells on microelectrode array. Journal of Neuroscience Methods. 2017 maalis 15;280:27-35. https://doi.org/10.1016/j.jneumeth.2017.01.019

Kolasa M, Hakulinen U, Brander A, Hagman S, Dastidar P, Elovaara I et al. Diffusion tensor imaging and disability progression in multiple sclerosis: A 4-year follow-up study. Brain and Behavior. 2019 tammi;9(1). e01194. https://doi.org/10.1002/brb3.1194

Klapper SD, Garg P, Dagar S, Lenk K, Gottmann K, Nieweg K. Astrocyte lineage cells are essential for functional neuronal differentiation and synapse maturation in human iPSC-derived neural networks. Glia. 2019;67(10):1893-1909. https://doi.org/10.1002/glia.23666

Kivekäs I, Pöyhönen L, Aarnisalo A, Rautiainen M, Poe D. Eustachian tube mucosal inflammation scale validation based on digital video images. OTOLOGY AND NEUROTOLOGY. 2015 joulu 1;36(10):1748-1752. https://doi.org/10.1097/MAO.0000000000000895

Kauppi J-P, Pajula J, Niemi J, Hari R, Tohka J. Functional brain segmentation using inter-subject correlation in fMRI. Human Brain Mapping. 2017 touko 1;38(5):2643-2665. https://doi.org/10.1002/hbm.23549

Kangas J, Rantala J, Majaranta P, Isokoski P, Raisamo R. Haptic feedback to gaze events. julkaisussa Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2014. Association for Computing Machinery. 2014. s. 11-18 https://doi.org/10.1145/2578153.2578154

Kaipio ML, Cheour M, Öhman J, Salonen O, Näätänen R. Mismatch negativity abnormality in traumatic brain injury without macroscopic lesions on conventional MRI. NeuroReport. 2013 touko 29;24(8):440-444. https://doi.org/10.1097/WNR.0b013e32836164b4

Juuti-Uusitalo K, Nieminen M, Treumer F, Ampuja M, Kallioniemi A, Klettner A et al. Effects of cytokine activation and oxidative stress on the function of the human embryonic stem cell–derived retinal pigment epithelial cells. Investigative Ophthalmology and Visual Science. 2015;56(11):6265-6274. https://doi.org/10.1167/iovs.15-17333

Juhola H, Postila PA, Rissanen S, Lolicato F, Vattulainen I, Róg T. Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience. 2018 elo 1;384:214-223. https://doi.org/10.1016/j.neuroscience.2018.05.035

Ju YSE, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLIFE. 2014;3. https://doi.org/10.7554/eLife.02935

Javanainen M, Enkavi G, Guixà-Gonzaléz R, Kulig W, Martinez-Seara H, Levental I et al. Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Computational Biology. 2019 touko 1;15(5). e1007033. https://doi.org/10.1371/journal.pcbi.1007033

Istance H, Vickers S, Hyrskykari A. The validity of using non-representative users in gaze communication research. julkaisussa Proceedings - ETRA 2012: Eye Tracking Research and Applications Symposium. 2012. s. 233-236 https://doi.org/10.1145/2168556.2168603

Iosifidis A, Tefas A, Pitas I. Distance-based human action recognition using optimized class representations. Neurocomputing. 2015 elo 5;161:47-55. https://doi.org/10.1016/j.neucom.2014.10.088

Iosifidis A, Tefas A, Pitas I. DropELM: Fast neural network regularization with Dropout and DropConnect. Neurocomputing. 2015 elo 25;162:57-66. https://doi.org/10.1016/j.neucom.2015.04.006

Iosifidis A, Tefas A, Pitas I. Regularized extreme learning machine for multi-view semi-supervised action recognition. Neurocomputing. 2014 joulu 5;145:250-262. https://doi.org/10.1016/j.neucom.2014.05.036

Iosifidis A. Extreme learning machine based supervised subspace learning. Neurocomputing. 2015;167:158–164. https://doi.org/10.1016/j.neucom.2015.04.083

Iosifidis A, Tefas A, Pitas I. Learning sparse representations for view-independent human action recognition based on fuzzy distances. Neurocomputing. 2013 joulu 9;121:344-353. https://doi.org/10.1016/j.neucom.2013.05.021

Iosifidis A, Mygdalis V, Tefas A, Pitas I. One-Class Classification based on Extreme Learning and Geometric Class Information. Neural Processing Letters. 2016;1-16. https://doi.org/10.1007/s11063-016-9541-y

Ilvesmäki T, Koskinen E, Brander A, Luoto T, Öhman J, Eskola H. Spinal cord injury induces widespread chronic changes in cerebral white matter. Human Brain Mapping. 2017;38(7):3637-3647. https://doi.org/10.1002/hbm.23619

Iantovics LB, Emmert-Streib F, Arik S. MetrIntMeas a novel metric for measuring the intelligence of a swarm of cooperating agents. Cognitive Systems Research. 2017 loka 1;45:17-29. https://doi.org/10.1016/j.cogsys.2017.04.006

Hyrskykari A, Istance H, Vickers S. Gaze gestures or dwell-based interaction? julkaisussa Proceedings - ETRA 2012: Eye Tracking Research and Applications Symposium. 2012. s. 229-232 https://doi.org/10.1145/2168556.2168602

Hyppönen J, Hakala A, Annala K, Zhang H, Peltola J, Mervaala E et al. Automatic assessment of the myoclonus severity from videos recorded according to standardized Unified Myoclonus Rating Scale protocol and using human pose and body movement analysis. Seizure. 2020 maalis 1;76:72-78. https://doi.org/10.1016/j.seizure.2020.01.014

Heikkinen H, Vinberg F, Nymark S, Koskelainen A. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: A possible role for gap junctional decoupling. Journal of Neurophysiology. 2011 touko;105(5):2309-2318. https://doi.org/10.1152/jn.00536.2010

Heikkilä H, Räihä KJ. Simple gaze gestures and the closure of the eyes as an interaction technique. julkaisussa Proceedings - ETRA 2012: Eye Tracking Research and Applications Symposium. 2012. s. 147-154 https://doi.org/10.1145/2168556.2168579

He Q, Rezaei A, Pursiainen S. Zeffiro User Interface for Electromagnetic Brain Imaging: a GPU Accelerated FEM Tool for Forward and Inverse Computations in Matlab. Neuroinformatics. 2019. https://doi.org/10.1007/s12021-019-09436-9

Hartikainen KM, Sun L, Polvivaara M, Brause M, Lehtimäki K, Haapasalo J et al. Immediate effects of deep brain stimulation of anterior thalamic nuclei on executive functions and emotion-attention interaction in humans. JOURNAL OF CLINICAL AND EXPERIMENTAL NEUROPSYCHOLOGY. 2014 touko 28;36(5):540-550. https://doi.org/10.1080/13803395.2014.913554

Hagman S, Kolasa M, Basnyat P, Helminen M, Kähönen M, Dastidar P et al. Analysis of apoptosis-related genes in patients with clinically isolated syndrome and their association with conversion to multiple sclerosis. JOURNAL OF NEUROIMMUNOLOGY. 2015 maalis 15;280:43-48. https://doi.org/10.1016/j.jneuroim.2015.02.006

Hagman S, Raunio M, Rossi M, Dastidar P, Elovaara I. Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: Prospective clinical and MRI follow-up study. JOURNAL OF NEUROIMMUNOLOGY. 2011 touko;234(1-2):141-147. https://doi.org/10.1016/j.jneuroim.2011.02.009

Gracia-Tabuenca J, Seppä V-P, Jauhiainen M, Paassilta M, Viik J, Karjalainen J. Tidal breathing flow profiles during sleep in wheezing children measured by impedance pneumography. Respiratory Physiology and Neurobiology. 2020;271. 103312. https://doi.org/10.1016/j.resp.2019.103312

Gavas RD, Tripathy SR, Chatterjee D, Sinha A. Cognitive load and metacognitive confidence extraction from pupillary response. Cognitive Systems Research. 2018 joulu 1;52:325-334. https://doi.org/10.1016/j.cogsys.2018.07.021

Franco P, Värri A. Experiments of the sonification of the sleep electroencephalogram. Finnish Journal of eHealth and eWelfare. 2015 touko 11;7(2-3):65-74.

Faisal A, Gillberg J, Leen G, Peltonen J. Transfer learning using a nonparametric sparse topic model. Neurocomputing. 2013 heinä 18;112:124-137. https://doi.org/10.1016/j.neucom.2012.12.038

Enkavi G, Mikkolainen H, Güngör B, Ikonen E, Vattulainen I. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin. PLoS Computational Biology. 2017 loka 1;13(10). e1005831. https://doi.org/10.1371/journal.pcbi.1005831

Emmert-Streib F. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: Environmental factors. PeerJ. 2013;2013(1). e10. https://doi.org/10.7717/peerj.10

Emmert-Streib F, Glazko GV. Pathway analysis of expression data: Deciphering functional building blocks of complex diseases. PLoS Computational Biology. 2011 touko;7(5). e1002053. https://doi.org/10.1371/journal.pcbi.1002053

Emmert-Streib F. Influence of the neural network topology on the learning dynamics. Neurocomputing. 2006 touko;69(10-12):1179-1182. https://doi.org/10.1016/j.neucom.2005.12.070

Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E. Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition. CELL DEATH AND DISEASE. 2012 helmi;3(2). e271. https://doi.org/10.1038/cddis.2012.10

Chen K, Zhang Z. A Primal Neural Network for Online Equality-Constrained Quadratic Programming. Cognitive Computation. 2018;10(2):381–388. https://doi.org/10.1007/s12559-017-9510-4

Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge. NeuroImage. 2015 touko 1;111:562-579. https://doi.org/10.1016/j.neuroimage.2015.01.048

Berry J, Frederiksen R, Yao Y, Nymark S, Chen J, Cornwall C. Effect of rhodopsin phosphorylation on dark adaptation in mouse rods. Journal of Neuroscience. 2016 kesä 29;36(26):6973-6987. https://doi.org/10.1523/JNEUROSCI.3544-15.2016

Basnyat P, Natarajan R, Vistbakka J, Lehtikangas M, Airas L, Matinlauri I et al. Elevated levels of soluble CD26 and CD30 in multiple sclerosis. Clinical and Experimental Neuroimmunology. 2015 marras 1;6(4):419-425. https://doi.org/10.1111/cen3.12253

Basnyat P, Hagman S, Kolasa M, Koivisto K, Verkkoniemi-Ahola A, Airas L et al. Association between soluble L-selectin and anti-JCV antibodies in natalizumab-treated relapsing-remitting MS patients. Multiple Sclerosis and Related Disorders. 2015 heinä 1;4(4):334-338. https://doi.org/10.1016/j.msard.2015.06.008

Angleraud A, Houbre Q, Kyrki V, Pieters R. Human-robot interactive learning architecture using ontologies and symbol manipulation. julkaisussa RO-MAN 2018 - 27th IEEE International Symposium on Robot and Human Interactive Communication: August 27-31, 2018, Nanjing, China.. IEEE. 2018. s. 384-389. (IEEE RO-MAN). https://doi.org/10.1109/ROMAN.2018.8525580

Angleraud A, Houbre Q, Pieters R. Teaching semantics and skills for human-robot collaboration. Paladyn. 2019;10(1):318-329. https://doi.org/10.1515/pjbr-2019-0025

Alarautalahti V, Ragauskas S, Hakkarainen JJ, Uusitalo-Järvinen H, Uusitalo H, Hyttinen J et al. Viability of Mouse Retinal Explant Cultures Assessed by Preservation of Functionality and Morphology. Investigative ophthalmology & visual science. 2019 touko 1;60(6):1914-1927. https://doi.org/10.1167/iovs.18-25156

Akkil D, Isokoski P, Kangas J, Rantala J, Raisamo R. TraQuMe: A tool for measuring the gaze tracking quality. julkaisussa Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2014. Association for Computing Machinery. 2014. s. 327-330 https://doi.org/10.1145/2578153.2578192

Acimovic J, Mäki-Marttunen T, Linne M-L. Computational study of structural changes in neuronal networks during growth: a model of dissociated neocortical cultures. julkaisussa Fellous J-M, Prinz A, toimittajat, Twentieth Annual Computational Neuroscience Meeting: CNS*2011. Vuosikerta 12 (Suppl 1). Stockholm: BioMed Central. 2011. s. P203. P203. (Annual Computational Neuroscience Meeting CNS). https://doi.org/10.1186/1471-2202-12-S1-P203

Acimovic J, Mäki-Marttunen T, Linne M-L. Computational modeling of growth in cortial cultures using the NETMORPH simulation tool. julkaisussa Neuroscience 2010, 40th Annual Meeting, San Diego, USA, 13-17 November 2010. 2010. s. 2 p

Acimovic J, Mäki-Marttunen T, Linne M-L. The effects of neuron morphology on graph theoretic measures of network connectivity: The analysis of a two-level statistical model. Frontiers in Neuroanatomy. 2015 kesä 10;9(June). 76. https://doi.org/10.3389/fnana.2015.00076

Acimovic J, Teppola H, Selinummi JJ, Linne M-L. Computational tools for assessing the properties of 2D neural cell cultures. julkaisussa Johnson D, toimittaja, Eighteenth Annual Computational Neuroscience Meeting: CNS*2009. Vuosikerta 10 (Suppl 1). Berlin: BioMed Central. 2009. s. P170. P170

Acimovic J, Mäki-Marttunen TM, Linne M-L. Whole-cell morphological properties of neurons constrain the nonrandom features of network connectivity. julkaisussa Cymbalyuk G, Burkitt A, toimittajat, 24th Annual Computational Neuroscience Meeting: CNS*2015. Vuosikerta 16 (Suppl 1). Prague: BioMed Central. 2015. s. P:O7. O7

Acimovic J. Emergence of global and local structural features during development of neuronal networks. julkaisussa Proceedings of the Eighth International Workshop on Computational Systems Biology, WCSB 2011, June 6-8, 2011, Zürich, Switzerland . Tampere: TICSP. 2011. (TICSP Series ).

Acimovic J, Teppola H, Mäki-Marttunen TM, Linne M-L. Data-driven study of synchronous popula on ac vity in generic spiking neuronal networks: How much do we capture using the minimal model for the considered phenomena?. 2018. Julkaisun esittämispaikka: Brain and Mind Symposium 2018, Helsinki, Suomi.

Acimovic J. Neural networks, cell cultures and some older work on data analysis.. 2009. Julkaisun esittämispaikka: Okinawa Computational Neuroscience Course 2009, Japani.

Acimovic J, Teppola H, Mäki-Marttunen TM, Linne M-L. Data-driven study of synchronous population activity in generic spiking neuronal networks: How much do we capture using the minimal model for the considered phenomena? BMC Neuroscience. 2018 loka 29;19(Suppl 2):68-69.

Acar GO, Kivekäs I, Hanna BM, Huang L, Gopen Q, Poe DS. Comparison of stapedotomy minus prosthesis, circumferential stapes mobilization, and small fenestra stapedotomy for stapes fixation. OTOLOGY AND NEUROTOLOGY. 2014;35(4). https://doi.org/10.1097/MAO.0000000000000280